NADOL.

Nibbles Away
Disk Optimized

Language

written by

Randy Ubillos

User’s Manual

N.AD.O.L.

Nibbles Away Disk Optimized Language

version 1.2

©1985 by
COMPUTER:applications, Inc.

Correction to the NADOL Manual

Along with the enclosed replacement pages for the NADOL manual, the
following corrections should be made to your manual:

Information from Chapter's 11 and 12 have been incorporated into Chapter
10.
their references should be removed from the table of contents.

On page 3.1, in the last paragraph, the phrase "and then add those two
resuits together” should read "and then multiply those two results”.

On page 5.3, the result from the program should print the numbers from 0
to4,not 0to 5.

On page 5.4, the program should start with the statement "DEFINE INTEGER
1,J,K" instead of the other way around.

On page 5.6, the second program should have "WHILE 1" as its loop control
statement, since this forces ther condition to always be true.

On page 8.49A, under syntax, the statement is called "RSYNC" not "WSYNC".

On page 10.2, the last paragraph should have the following sentence in it:
"NADOL is shipped to use slot | for a printer...".

§-9-85

T, Efrom the Lditor's Desk.=
é)

COMPUTER:applications, Inc. introduces NAAD.OL,™ our interpreted language
for the Apple Il line of computers. We believe that by using the NADOL
language, you will be provided with a state-of the art tool for designing
utility software, and other highly interactive applications.

Nibbles Away Il has been included with the NADOL package as an example of
the power and versatility of our new language. The Nibbles Away Il section
will be enhanced over time with a Program Look-up Database, powerful
editing utilities, and sophisticated backup modules.

Before you begin to explore the features of NADOL, this manual needs to be
put in order. There is a set of addendums, and chapter 10 which should be
inserted into the manual. Also, the section divider tabs should be inserted.
The 'NADOL' tab goes in front of chapter 1, 'NAIIl AND OTHER UTILITIES' goes
in front of chapter 10, 'DISK PROTECTION' goes in front of chapter 13, and
"APPENDIXES' goes in front of the appendixes.

Please take a moment to make a backup of your original NADOL diskette. An
extra label is provided for this purpose. NADOL is not copy protected, so you
may make as many copies as you wish sor your own usé only. Please do not
give away copies of this software.

For those who wish to keep up with the new utilities being developed in
NADOL, or for those who want to know the latest 'happenings' regarding copy
protection, the NIBBLE NEWS™ subscription newsletter service is available,
NIBBLE NEWS is the COMPUTER:applications Inc. newsletter, dedicated to
Nibbles Away parameters and NADOL programs. This newsletter contains
Tutorials, helpful hints, and many useful and interesting programs. It is our
way of bringing you the most recent developments as quickly as possible. If
you wish to subscribe to Nibble News, please contact COMPUTER:applications,
Inc. at (919) 846-1411.

I know that you are anxious to explore ail of the inner details of this package,

and we hope that you have as much fun using NADOL and NAlil as we did in
making it.

Randy Ubillos

Important!

You should make a backup copy of your NADOL
master disk NOW. This can be done by using the
'FAST SECTOR COPY' option from the NAIII main
menu (option #2). After making a backup, put
your original disk away. A second disk label is

supplied to be placed on this backup disk.

fill

. Efrom the Editor's Besk: = E]“

Well, here it is. The long awaited Nibbles Away Hl. As you have probably
noticed, NAlIl is actually a program written in NADOL™, our new
interpreted language for the Apple computer. We believe you will find that
it provides the state-of-the-art in software backup, and goes well beyond
in its capabilities for developing highly interactive disk utilities.

The first step is to arrange your manual. There is a set of addendums, and
chapter 10 which should be inserted into the manual. Also, the cardboard
dividers should be inserted. 'NADOL' goes in front of chapter 1, 'NAllI and
other utilities' goes in front of chapter 10, 'Disk Protection’ goes in front
of chapter 13, and 'Appendixes’ goes in front of the appendixes.

Please take a moment to make a backup of your original disk. An extra
label is provided for this purpose. NADOL is not copy protected, so you
may make as many copies as you wish sor your own use only. Please do
not give away copies of this software.

If you wish to keep up with "what's happening” with NADOL, current lists
of parameters, and many useful and interesting programs for NADOL,
‘Nibble News' is available. Nibble News is the COMPUTER:applications Inc.
newsletter, dedicated to Nibbles Away (and now NADOL tool). it is our way
to bring you the most recent developments as quickly as possible. If you
are interested in subscribing to Nibble News, please contact
COMPUTER:applications, Inc. at (919) 846-1411.

I know that you are anxious to explore all of the inner details of this
package, and we hope that you have as much fun using NADOL and NAIll as
we did in making it the leader in software backup technology.

RARNDY UBILLOS

P.S. In case anyone was wondering, this entire manual, pictures and all,
was done 100% on an Apple Macintosh with an imagewriter printer.
Every page was produced camera ready, with no need for physical "cut
and paste’ editing!

DISCLAIMER OF ALL WARRANTY AND LIABILITY

COMPUTER:applications Inc., or any dealer distributing
this product, makes NO WARRANTY, either EXPRESS or
IMPLIED, with respect to the information provided, or to
the floppy diskette, its quality, performance,
merchantability, or fitness for any particular use. It is
solely the purchaser’s responsibility to determine its
suitability for any particular purpose.

COMPUTER:applications, Inc. will in no event be held
Hable for direct, indirect, or incidental damages
resulting from any defect or ommision in the information
provided, the floppy diskette, or other processes
including, but not limited to any interruption of service,
loss of business or anticipatory profit, legal action, or
other consequential damages.

THE USER ASSUMES ALL RESPONSIBILITY ARISING FROM
THE USE OF THIS SOFTWARE!

COMPUTER:applications, Inc. reserves the right to make
corrections or improvements to the information
provided, and to the related software at any time
without notice.

COPYRIGHT NOTICE

This manual and the accompanying software are
copyrighted. All rights reserved. This document, or the
accompanying software may not, in whole or in part, be
copied, photocopied, reproduced, translated or reduced to
any electronic medium or machine readable form without
prior consent, in writing, from COMPUTER:applications,
Inc.

© 1985 by

COMPUTER:applications, inc.
12813 Lindley Drive
Raleigh, NC 27609

(919) 846-1411

NADOL™

Table of Contents
SECTION 1:
A History of Nibbles Away ... Chapter |
Using NADOL Chapter 2
Built-in Math ... Chapter 3
Using the Editor Chapter 4
NADOL tutorial Chapter 5
Procedures and Functions ... Chapter 6
Examples to try Chapter 7
Built-in Statements Chapter 8
Built-in Yariables Chapter 9
SECTION 2
Nibbles Away HI ... Chapter 10
Configure Chapter11
16 sector copy Chapter 12
SECTION 3
Disk Protection .. Chapter 13
SECTION 4
EFror MeSSagEs ... wmresmncsinsss Appendix A
Decimal/Hex/ASCII chart ... Appendix B
Disk Speed Adjustment ... Appendix C
NADOL memory map ... Appendix D

Quick reference chart ..., Appendix E

SR

Chapter 1

A History of Nibbles Away

N ADOL programmer's Reference Manual 1.1

A HISTORY OF NIBBLES AWAY

Nibbies Away began back in 1980 as an experiment into the disk protection
schemes which had begun to come into use. Prior to that time most disks
were directly copyable, and back-ups were as simple as using the
Apple-copy program supplied on the master disk.

The software companies claimed that the protection was to protect their
interests against software pirates. While no one tries to pretend that
software pirates do not exist, the fact that legal owners of a program
need to make back-ups to protect their software investment, is largely
disregarded by the software companies.

Most companies would repair a 'blown’ disk if the user was willing to part
with the disk for a week or two while it was shipped around the country
with their valuable payroll or database information. Obviously this was
not a reasonable solution.

Even so, it seemed that as soon as one disk appeared using a protection
system, many more began to use similar systems until the disks without
protection were few and far between.

In 1981 Nibbles Away version A1 was announced as a disk backup program
to allow software users to protect their investment.

The software companies quickly found that the flexibility of the Apple
disk drive hardware allowed an incredible variety of protection schemes
to be implemented. To combat these new techniques, in early 1982
Nibbles Away Il was announced.

Nibbles Away |1 had a much more flexible disk back-up system, easy to use
and modify parameters with names instead of numbers. Also included was
a full set of track and sector editors which allowed the user to view the
data on a disk directly to determine the type of protection being used.

But still the software companies pushed forward to more and more
extensive protection systems, many times contracting companies whose
only programming service was protecting diskettes. Many times these
protection systems cost a great deal of money, which resulted in higher
software costs. Some of the schemes were unreliable, in some cases with
failure rates as high as S0% for the finished diskettes.

Chapter 1: A history of Nibbles Away

N ADOL programmer's Reference Manual 1.2

With the incredibly diverse selection of protection systems on the market,
each having a large number of variations within itself, the total number of
protection systems is staggering and extremely difficult for a single
program to keep up with.

Taking all of this into consideration, COMPUTER:applications decided that a
giant step forward was needed to provided users with a comprehensive
program capable of keeping up with the ever changing protection systems.

The concept of NIBBLES AWAY 11 was developed Lo provide the maximum
possible flexibility.

At this point one item should be clarified. The menus and prompts that are
seen on the screen during a normel copy are actually done through a
program written in NADOL, the Nibbles Away Disk Optimized Language.
This program can be modified by the user at will. This allows NAIIl to
stay current, no matter what developments take place.

An added benefit is that users can create their own programs under this
powerful language. A few examples would be programs which can convert
DOS 3.3 files to Apple CP/M, or one which could display a color disk map of
the files on a diskette. The possibilities are almost limitless.

Users should not be scared off by the term ‘language’. NADOL is a language
in the same way that Applesoft is a language. Anyone who can program in
Applesoft can program in NADOL. In many cases it is much easier,
especially for operations involving diskettes, since many of NADOL's
functions make handling disk information easy.

Chapter 1: A history of Nibbles Away

Chapter 2

Using NADOL

N ADOL programmer's Reference Manual 2.1

USING NADOL

NADOL is an interactive language which can be used in two distinct modes.
The first is /mmecdiate mode, where commands are executed as they are
typed in. The second is ceferred mode, where a series of commands is
typed in and executed at a later time.

To become aquainted with NADOL, immediate mode is the best thing to
start with. In this section we will go through several examples. The way
to get the most out of this section is to have NADOL up and running on the
screen and try the examples as they are given. This type of ‘hands on'
training usually gives the best results.

To enter NADOL itself, choose the NADOL option from the main Nibbles
Away |1l menu. This will display a period "', which is the prompt for the
NADOL immediate mode.

At this point, try a simple command. Type:
PRINT "HELLO®

And press the <RETURN> key. The word HELLO will be printed on the
screen below the statement which was typed in. Numeric expressions
work in the same manner. Type in the following:

PRINT 5%6

This will print 30 on the screen. Most of the commands which are listed in
chapter 8 can be typed in directly to give immediate results. Some
procedures require variables to be passed as their parameters. To do this
the variables must first be defined. As an example, the following
sequence of commands will read in and display the data from sector 5 on
track 4:

DEFINE INTEGER TRACK,SECTOR,COUNT,ERR
TRACK=4

SECTOR=5

COUNT=1

RSECT{RBUF , TRACK, 0, SECTOR, COUNT, 6, 1,ERR)
DISPLAY(RBUF,256)

Chapter 2: Using NADOL

N ADOL programmer’s Reference Manual 2.2

The DEF IHE statement creates the four variables which are needed to pass
to the ASECT routine. Then the track and sector numbers are assigned to
the variables with the '=" operator. The variable COUNT {s set to | since
only one sector is to be read. The RSECT procedure is called to perform the
actual read operation. Then the BISPLAY procedure is called to show the
data which was just read in. The predefined variable BBUF is a section of
memory normally used for raw data reads, but it can be used for any other
purpose as well. In this case we used it as a temporary storage buffer for
the data that was read and displayed.

At any time that NADOL is waiting for a response (when there is a blinking
cursor present on the screen), the ctrl-P keystroke may be used to print
the contents of the screen. The predefined variable PRTSLOY is used to
control which slot the data will be sent to. It is normally set to 1, since
that {s the standard slot for a printer interface card. Any slot from 1 to 7
may be used if a proper interface card exists in that slot. (In writing this
manual, the screen dumps were embedded in the text by setting PRTSLOT to
the slot of a serial interface card connected to the word processing
computer, allowing direct transfers of screen images in to the text seen
here). The ctri-P command is very useful for saving data for future
reference.

n@m Be sure that the output device is ready before using ctri-P.

In the example above we saw how integer variables were created. Integer
variables are the normal type used for most operations. They can contain
numbers from -32767 to 32768. For some operations it is desirable to use
byte variables. Byte variables can contain values from 0 to 255. The main
difference is that integers occupy two bytes of memory, while bytes
occupy, what else, one byte.

Chapter 2: Using NADOL

N ADOL programmer’s Reference Manual 2.3

There are many instances where it is desirable to access many variables
as a unit. This might be the case where a sector of data is read in off a
diskette. Instead of assigning each byte to a separate variable, which
would make getting to the information very difficult, NADOL provides
arrays. Arrays are groupings of variables. They are all referred to by the
same name, with the suwbscript distinguishing between them. Below is
an example of how to create and use an integer array:

DEF(NE INTEGER[10] MINE
HINE[D]=1

HINE[4]=5

PRINT HINE[O]+MINE[4]

This would print 6, since the two values added together were | and 5. Each
separate variable is called an e/ement of the array. The number between
the brackets, which determines which element is being referred to, is
called the suwbscript. The subscript may be either a number, or it may be
a variable or expression. See Chapter 3 for more information on
expressions.

At this point it should be noted that not all Apple keyboards can normally
generate the left bracket. On the Apple //e and //c both brackets are
present on the keyboard. On the Apple Il and)+ the right bracket can be
entered with the shift-M key, and within NADOL the left bracket may be
entered using the shift-N key.

when an array is defined, the highest desired element is specified in the
DEF INE statement. If the number 10 is used, as in the example above,
subscripts may be In the range O through 10, giving 11 elements total.
There is actually no checking performed by NADOL to verify that the
subscript used with an array is within the limits of its definition. It isup
to the user to make sure that the subscript is within the range originally
defined, or unpredictable results may occur.

Any variables which are defined take space away from NADOL's free space.
Both programs and variables use up free space. Care should be taken not to
allocate too many variables if a large program is to be entered. Many
times the predefined buffers RBUF and UBUF can be used for temporary data
storage instead of declaring special buffers for a particular application.

Chapter 2: Using NADOL

N ADOL programmer's Reference Manual 2.4

All data which is managed by NADOL s stored in efther bytes or integers,
or arrays of one or the other. Many times it is desired to store text data in
a program. NADOL has provisions for handling this buflt in. Text is stored
in byte arrays in a special format. The text starts at element O of the
array, with each additional character following in sequential locations of
the array. The element following the end of the text should contain a value
of zero. This signifies the end of the string to NADOL.

Normally when an array variable is specified in a PRINT statement, the
value of the first element (or whichever one was specified by a subscript)
is displayed. In order to print the text contained in a byte array, an
exclamation point should be placed in front of its name in the PRINT
statement. Take the following example:

DEFINE BYTE[30] STRING
STRING[0]="H"
STRING[1]="1"
STRING[2]=0

PRINT !STRING

Would print HI on the screen. (The PRCK procedure, detailed in chapter 8, is
the normal way to put text into byte arrays). This shows how a byte array
can be used as a string in a program.

In order to execute programs in deferred mode, they must be typed in with
the built-in editor. Chapter 4 explains the use of the editor, while chapter
5 describes programming in the NADOL deferred mode.

Chapter 2: Using NADOL

Chapter 3

Built-in Math

N ADOL programmer's Reference Manual 3. 1

BUILT-IN MATH

Mathematical operations make up a large part of what a program is usually
required to do. NADOL has a large number of built-in math functions to
allow the programmer a great deal of freedom when writing a program.

Since NADOL is designed as a utility language, integers are the most
frequently used numbers. NADOL uses '16-bit’ signed integers for all of its
internal calculations. This results in a range of -32767 to 32768 for ail
numerical values which are handled by NADOL.

For performing most calculations, the standard mathematical operators
are provided. Along with these are several logical operators (described
below) and several comparison operators (also described below).

Wwhen NADOL looks at an expression and begins to evaluate it, there is a set
of rules which determines which operations are performed first, and
which are performed last. This is called precedence. Those operators
with the highest precedence will be evaluated first. The list of available
operators, from highest to lowest precedence, is as follows:

*/ Multiplication and division
+ - Addition and subtraction
<> = <= >= AND OR XOR Comparisons and logical operators

This order of precedence means that the expression:
5%6+3%4

Will result in a value of 42, NADOL first evaluates the two
multiplications, since they have the highest precedence. Then the addition
is performed. Sometimes it will be desirable to overide the order of
precedence. Take the following exampled

P+3%6+9
if the actumal intgnt of this expression was to add 7 and 3, then add 9 and 6,
and then ,336‘ ose two results together, the result would not be the

desired value, since NADOL will perform 3*6 first, and then add the 7 and
the 9. To avoid this, parentheses may be used, as in the following example:

Chapter 3: Buift—in math

N ADOL programmers Reference Manual 3.2

(?+3)*(6+9)

The parentheses inform NADOL to evaluate everything inside the
parentheses first, and then to use the results in the multiptication. The
expressions within the parentheses may be any standard expression, and
may even include nested parentheses. Remember that within each set of
parentheses, NADOL follows the same rules of precedence to evaluate what
it finds.

The logical operators are AND, OR, and XOR. These provide the logical AND,
OR, and Exclusive-OR operations, respectively. Each of these operators
performs their corresponding logical test on each bit of the two sixteen
bit operands, and returns a sixteen bit resuit.

The comparison operators return a 1 or O result depending on whether or
not the condition associated with the operator is true or false, based on
the two arguments. These operators are useful when used in conjunction
with the flow control statements (see chapter S).

When entering numbers, NADOL assumes that they are decimal, unless a
dollar sign ($) is placed in front of the number, which specifies base
sixteen, hexadecimal. This means that '10° would be evaluated as a
decimal ten, while '$10" would be the hexadecimal representation for the
number sixteen. These two representations may be mixed freely in
expressions. internally all values are stored in hexadecimal. Before any
assignments or comparisons are performed, all operators are converted to
hexadecimal, so the user need not be concerned about comparing
hexadecimal and decimal values.

Many times it is desirabie to be able to use the ASCil value of a particular
character in a comparison or expression. NADOL allows this by placing
double quotes (*) around the desired character. For example, "A* would
evaluate to 65, which is the hexadecimal equivalent for the letter A.

Chapter 3: Built-in math

2

Chapter 4

s

Pz
AR
RRRRE000%

Using the Editor

A ?

N ADOL programmer's Reference Manual 4.1

THE EDITOR

NADOL has a buiit-in program editor for creating or modifying programs.
This editor allows the user to scan through a program, insert and delete
lines or characters, and make changes at any point in the program. It is a
highly interactive editor with a set of control-key driven commands.

The editor can handle program lines up to 250 characters in length, and
supports horizontal (sideways) scrotling to allow these long lines to be
displayed, no matter which version of the editor is being used.

There are several different versions of the editor included on the NADOL
master disk. The standard editor is the 40 column version. Versions are
also included for the Apple //e, Apple //c, Videx, Sup'r'term and Smarterm
80 column cards.

The editor is invoked by typing EDIT from the " prompt of NADOL. This will
display any current program and place the cursor at the top of the screen.
{f an 80 column version of the editor is being used, the card will be
activated at this time. If the 80 column card does not have a built in video
switch, the user should switch cables whenever the editor is activated.

if no program is in memory, the cursor will be at the top of the screen
with [END OF TEXT] displayed. This shows that there are no lines of
program currently stored. If a program is currently in memory when the
editor is invoked, it will be displayed on the screen. If it is desired to
enter a new program, then the "NEW" command should be typed before
entering the editor.

I:> Due to the larger screen area of an 80 column card, the speed of
the editor is somewhat slower when using one of these versions.
Some users may wish to stay with the 40 column editor due to
its greater speed, and since it can perform horizontal scrolling
to view programs of any width.

The commands of the editor, and their descriptions are listed below. The

six cursor movement keys have been chosen for their physical location on
the keyboard.

Chapter 4: Using the Editor

NADOL Programmer's Reference Manual 4.2

The keys 'W','E’, and 'R’ all perform upward movement, and the keys 'Z',’X’
and 'C’ all perform downward movement, each one being the opposite of the
one above it. The layout of these keys makes moving the cursor very easy.

W /| E | R | ¢ These keys move UP

Z | X | C | 4= These keys move DOWN
T t——'——-— Page Movements

Cursor movements

Scroll Movements

The full list of commands is as follows:

Keystroke Result

left arrow Moves the cursor to the left one space at a time.
right arrow Moves the cursor to the right one space at a time.
ctri-A Selects Add mode. All subsequent alphanumeric

keys will be inserted into the current line at the
cursor position.

ctri-B Moves the cursor to the Beginning of the current
line.

ctri-C Page down, described above.

ctr1-D Deletes the character to the right of the cursor on

the current line,

ctri-t Cursor up, described above.

Chapter 4: Using the Editor

NADOL Programmer’s Reference Manual 4. 3

ctri-F Restores previous contents of line. Used to unde
any changes made since the cursor was placed on
this line.

ctri-6 Moves the cursor to the last line which was

executed from NADOL. This is useful for finding
the line where an error occurred from within a
program.

ctri-| Tabs to the next tab stop. Tab stops are set every
2 character positions.

ctri-L Inserts a new Line at the current cursor position.
All subsequent lines are moved down one line.

ctri-N Moves to the End of the current line.

ctri-Q Quits the editor and returns to NADOL.

ctri-R Page up, as described above.

ctri-w Scroll up, described above.

ctri-X Cursor down, described above.

ctri-y Deletes the line which the cursor currently
occupies. All subsequent lines are moved up one
line.

ctri-Z Scroll down, described above.

These commands may be used as many times as desired, in any order.

Alphanumeric characters are placed at the cursor location as they are
typed, replacing any characters which may have previously existed under
the cursor. The cursor moves one position to the right for each character
which is typed in.

IT the cursor moves onto the END OF TEXT marker, a new line will be

inserted at that point, allowing program to be entered without issuing the
ctri-L command.

Chapter 4: Using the Editor

i

S

Chapter S

Gt

3

NADOL Tutorial

N ADOL programmer's Reference Manual 5.1

THE LANGUAGE

NADOL is a structured programming language borrowing from the strong
points of several popular languages such as Pascal, BASIC and C. This
blend gives a language in which it is easy to write programs, and is able to
perform a wide range of tasks with ease.

Programs are arranged as one statement per line, one executing after
another. Several branching commands are available to control the flow of
the program based on conditions set up by the user.

The best way to start is with an example; so we will pick a simple
program to print out a number.

£:> The editor should be used to type in these programs. See
chapter 4 for a description of how te use the editor.

Type in the following program:;
PRINT 6%7

Now exit the editor (ctri-Q) and type 'RUN. The following should be
printed:

12

Typing 'RUN' caused NADOL to look at the program which had been entered,
starting at the first line. In this case, there was only one line; a simple
print statement. If there had been more lines, NADOL would have
performed the task specified by each one in the order in which they
appeared in the program.

Chaptes 5: NADOL tutorial

N ADOL programmer's Reference Manual 5.2

As NADOL steps through each line of a user program, it has several options
based on what it finds. Each line in a program can take on one of four
basic types:

1. Statement.

2. Assignment.

3. Procedure call.
4, Flow control.

Statements are lines which specify an action to take place, such as
initializing a disk, or setting a screen mode. These lines cause an action
to take place and then execution continues with the next line. An example
would be "PRINT (5+6)/3".

Assignments cause the result of an expression to be assigned to a
variable, Anexample would be "{=5",

Procedure Calls take a certain number of parameters from the line and
pass them to the specified routine. An example of this would be
"DISPLAY($800,40)". These lines cause an action to take place and then
execution continues with the next line,

Flow Control lines cause a change in the normal flow of execution of
statements. These lines include IF/ELSE/ENDIF, WHILE/ENDWHILE and the
infamous GOTO. These are the lines which make NADOL programable, and
those which will be discussed in detafl in this chapter.

Flow control statements allow a program to execute a series of commands
over and over again, or to execute certain sections of commands only when
predefined conditions arise.

The WHILE/ENDWHILE statements cause a series of commands to be
executed until a condition is met. The best way to see this is with an
example (Be sure to erase any previous program which was entered, by
typing "NEW"). Key in the program on the next page.

Chapter 5: NADOL tutorial

N ADOL programmer's Reference Manual 5.3

DEFINE INTEGER HE
HE=0
HHILE RE<S
PRINT HE
HE=HE+1
ENDNHILE
PRINT “DONE"

Now try running the program by typing "RUN". The screen should look like
this:

gi@\.awm-—c

NE

First, an explanation of some of the statements used is in order (see
chapter 8 for a full description of all statements). The DEF IME statement
created a variable called HE to which we can assign values, and which we
can perform tests on. The assignment HE=0 set the value of HE to zero.

The UHILE statement creates a loop. Everything between the HHILE and
ENDHHILE statements is executed until HE<S is no longer true. Inside the
loop we simply print HE and then add 1 to the value of HE.

The best way to understand what happens during a WHILE/ENDWHILE loop is
to follow the same steps that NADOL follows when it executes the
program:

The DEFINE statement creates a variable, and the following assignment
sets its value to zero. The first time that we reach the UHILE statement,
HE s zero, so HE is less than S, and the print and increment statements are
executed. The second time, HE is one, and s0 on until HE reaches 5, when it
is no longer less than 5. At this point the loop exits, and the program
continues at the statement following the ENDUKILE statement, stopping
after the last line in the program.

Chaptes 5: NADOL tutorial

N ADOL programmer’s Reference Manual 5.4

The section of the program between the WHILE and ENDWHILE lines is
called the WHILE/ENDWHILE bJ/ock. within this block, other
WHILE/ENDWHILE blocks may exist. This is called nresting
WHILE/ENDWHILE blocks may be nested up to 8 levels deep. An example of
a program which is nested 3 levels deep is shown below:

DEFINE L=7K INTEGER T, 5, K
=1
HHILE 1<=3
Ju
WHILE J<=2
K=1
MHILE k<=8
PRINT ***;
K=K+t
ENDUHLE
PRINT
Judsl
ENDHH ILE
PRINT
=141
ENDHH ILE

Wwhen run, this program would create the following display on the screen:

ERERERRE
RERBRBREK

RBERERRK
BRELRRLR

SRkgpgEL
RRRghRRk

This shows how WHILE/ENDWHILE blocks may be nested within each other.
For additional examples, examine the programs in chapter 7.

Chapter 5: NADOL tutorial

N ADOL programmer's Reference Manual 5.9

The IF/ELSE/ENDIF statements are the next topic. The statements cause a
series of commands to be executed only if a specific condition is true. An
example is in order:

IF HASLC>0
PRINT "YOU HAUE R LANGURGE CARD"
ENDIF

This short program will cause the message specified to be printed only if
the value of the predefined variable HASLC is greater than zero (See
chapter 9 for a list of predefined variables). Many times this form of the
IF/ELSE/ENDIF statement is enough, but there are many times when one
action should be taken when the specified condition is true, and another
action should be taken when it is not true. Examine the following addition
to the program above:

1F HASLC>D

PRINT “YOU HAVE A LANGUAGE CRRD"
ELSE

PRINT °THERE IS HO LANGUAGE CRRD IN THIS COMPUTER®
EHDIF

in this example, we have two messages which can print out, depending on
whether the condition "HASLC>0" is true or false.

This shows how we can control which parts of a program actually are
executed, depending on certain conditions. As with WHILE/ENDWHILE
blocks, IF/ELSE/ENDIF blocks may be nested up to 8 levels deep.
IF/ELSE/ENDIF and WHILE/ENDWHILE blocks may also be nested within each
other, in any order, as long as the blocks do not ‘cross’. An example of
blocks which cross would be:

DEFINE INTEGER ATE,EAT
ATE=S
ERT=ATE*?
HHILE ATE>3

ATE=ATE+1

IF ATE>EAT

ATE=ATE+3

ENDWHILE

ENDIF

Chapter 5: NADOL tutorial

N ADOL programmer's Reference Manual 5.6

in this example, the two control blocks overlap each other, creating a
program which makes very little sense. In all of the programs shown so
far, a convention has been set up where the lines inside each block are
indented by 2 spaces. This makes errors like the one in the program above
stand out clearly. This convention should be followed in all programs to
make debugging easier.

The final type of flow control statement is GOTO. The GOTO statement has
a rather rocky past. Many proponents of structured programming have
decided that it should be banned since, it can lead to "spaghetti bowl”
programs. GOTO is provided in NADOL because there are certain cases
where a single GOTO can reduce the overall size of a routine substantially.
It is not intended to be the sole type of branching used within a program!
To illustrate it's use, we must first talk about the LABEL statement. The
LABEL statement defines a location which can be branched to using a GOTO.
The following program gives an example of both of these:

DEFIHE INTEGER |
=1

LABEL LOOP
PRINT |

l=l4f

GOTO LoopP

This program will print a series of numbers starting at 1 and running up
until the ctri-C key has been pressed. This program, like most others,
should be coded with a WHILE/ENDWHILE block to make it more readable.
WHILE/ENDWHILE blocks which never terminate can be implemented using a
control expression which is always zero, such as the number 0. This would
resuit in the following program:

DEF INE INTEGER 1
[=1
HHILE @ 2

PRINT 1

f=1+1
ENDUHILE

This is easier to understand in a large program, and the GOTO statement

should be avoided whenever possible to insure readability and ease of
debugging later on.

Chaptes 5: NADOL tutorial

N ADOL programmer's Reference Manual 9.7

As we have seen from this section, flow control statements are the
backbone of NADOL. A language without the ability to change the order in
which it steps through a program is little more than a complicated mimic,
able only to perform a task in a specific order, leading to a single end
resuit. Flow control statements, however, allow a program to perform
different tasks based on decisions. This allows some operations to be
repeated until a particular task is completed. Very sophisticated and
‘intelligent’ programs may be devised by making extensive use of the
conditional facilities of NADOL. in all, the flow control statements,
combined with the large selection of built-in routines within NADOL, make
up a very powerful environment for almost any type of application.

This completes our description of the flow control statements of NADOL.
Chapter 7 provides a number of examples showing how these statements
are used in actual programs, and how they interact with other statements.

The NADOL master disk contains the programs in chapter 7 already entered
into NADOL format. The best way to learn what the different statements
do is to make changes to the programs and view the effect that the
changes have on the operation of the program (Always be sure to try these
changes on a BACKUP copy of the NADOL master disk, since some changes
may not be as harmless as they seem).

Chapter 5: NADOL tusorial

e

Chapter 6

R

Procedures and Functions

N ADOL programmers Reference Manual 6.1

PROCEDURES and FUNCTIONS

NADOL provides two different ways to create subroutines in a program.
which of the two is used for a particular application will depend on the
situation involved. Procedures perform a set of instructions and return
to the main program. Functions pass back a value to the main program.

The best way to illustrate how this works is with an example. The
following program contains a short procedure:

DEFIHE INTEGER J

PROCEDURE TIHESTHO
J=J%2
ENDPROC

J=8
PRINT J
TIHESTHO
PRINT J

If this program is run, the numbers 8 and 16 will be printed. This is what
happens:

The DEF INE statement creates the variable J.

A procedure is defined as the lines between the the PROCEBURE and ENDPROC
statements.

J is set to 8 and printed.

The statement TIMESTHO in the main program transfers control to the
procedure with that name.

TIHESTHO then multiplies J by 2 and exits.

J is then printed again, with its new value of 16 (8%2).

The procedure TIHESTHO might be useful if J were to be multiplied by 2
many times during a program. It would be more useful, in most cases, if
the procedure could multiply any number by 2. This is where parameter
passing comes into play.

When a procedure or function is called, it can be followed by an open

parentheses, a list of variables or expressions, and a close parentheses.
The variables or values within the parentheses are known as parameters.

Chapter 6: Procedures and Functions

N ADOL programmer's Reference Manual 6.2

These parameters then become available to the procedure or function. The
difference is that different parameters can be passed from different
points within a program.

Up to 8 parameters may be passed to a procedure or function at any one
time. From within the procedure, they are referenced as %1 through %8.
The percent sign signifies that a passed parameter is being referenced.

Another example is in order. Let's make a new program with a more
complicated procedure which will set the third passed parameter to 0 or
1, depending on whether the first two parameters are equal or not.

DEF INE INTEGER A,B,C,J

PROCEDURE CONPARE
IF %1 = %2
£3 =1
ELSE
$3 =0
ENDIF
ENDPROC

COMPARE(1,2,J)
PRINT J

COHPARE (4,2+2,J)
PRINT J

In this case, 0 and then 1 would be printed. The procedure is defined to
check the values of the first two passed parameters, %1 and %2. If they
are equal, as they are in the second case, the the third passed parameter,
%3, is set to aone. If they are not equal, as in the first case, %3 fs set to
0. These are the two values displayed when this example is run.

Note here that the third passed parameter was a variable name, and that
modifying the third parameter from inside the procedure modified the
value of J in the main program. In this way, a procedure can pass
information back to the routine which called it.

Be sure to specify a variable name for any parameter in which information
is going to be returned from a procedure.

Chapter 6: Procedures and Functions

N ADOL programmer's Reference Manual 6.3

If more than one procedure is defined, one procedure can call another, up to
eleven levels.

A procedure may pass its parameters to another procedure, in any position
in the parameter list. The called procedure will then reference the
parameter based on the position in /¢s parameter list. Any changes made
to the parameter wiil affect the parameter in the first subroutine, as well
as the passed variable in the main program.

Note that while procedures and functfons may occur at any point within a
program, it is a good idea to place them at the beginning of the program.

Functions operate in much the same way as procedures, except they act as
expressions rather than statements. Take the following example:

DEFINE INTEGER J

FUNCTION OURS
X1 = %1 + 1
RESULT= %1 * %1
ENDFUNC

PRINT OURS(?)
J = DURS(6)
PRINT J

As shown in this example, a function is used on the right hand side of an
equate, and returns a value.

The RESULT= statement defines the value which will be passed back to the
calling program. Passed parameters are handled in exactly the same way
as for procedures.

Functions are very useful for subroutines which generate a single value. If
more than one value is generated by the subroutine, a procedure may be a
better way to perform the task, using the parameter system to return
multiple values to the calling program.

Chapter 6: Procedures and Functions

N ADOL programmer's Reference Manual 6.4

The difference between procedures and functions may not be immediately
apparent. An analogy would be to compare procedures/functions to
messengers. Each one can carry up to eight packages, or parameters, in
their pack when they are sent out. During their travels, the items in their
packs may be modified. These modifications are retained when the
messenger returns. The only difference is that a function also brings back
an extra value. This analogy is illustrated in figure one below.

Procedures Functions

| Parameters

Parameters
Parameters

Procedﬁres return the same number of Functions have the same rules for
parameters that they take with them, parameters, but also return &
although the values may have been result to the caller.
modified.
Figure i

Another concept which s easier to understand with this same analogy is
parameters being passed to several levels of procedures/functions. At
each level, the parameter may be refered to as a different parameter
number, depending on where it was encountered in the parameter list. All
changes, at all levels, are retained and returned to the main program.
Figure two shows how the same parameter may be refered to with
different numbers at each level.

Chapter 6: Procedures and Functions

N ADOL programmer’s Reference Manual 6.5

Yalues passed to a procedure
or function may be passed
along to other procedures or
functions. Any changes made
to these parameters, at any
stage, will be returned back
— all the way to the original
caller.

Figure 2

These examples show just how versatile procedures and functions are. It
is important that the user understand these two statements fully to obtain
the most from the NADOL language.

Chapter 6: Procedures and Functions

N ADOL programmer's Reference Manual 6.6

The examples shown have dealt with the passed parameters being integers.
This is the assumed condition for a passed parameter unless otherwise
specified. If the %a is followed by a ‘B, the parameter will be referenced
as though it was declared as a byte variable. In either case, a subscript
may be added to the varfable if the passed parameter from the main
program is an array variable. The subscript specifies the element within
the array to use. If no subscript is used with an array variable, the first
element will be used.

Q No type checking is done on this mechanism, so care should be
taken to make sure that passed variables match the way that
they are used in a procedure or function, unless some other
effect is desired.

Procedures and functions are a much more powerful type of subroutine
mechanism than BASIC's GOSUB system. Since parameters may be passed,
subroutines may operate on a variety of variables and parameters without
having to be dedicated to just one specific variable or parameter.

For those familiar with Pascal or C, this parameter system will seem
familiar, since those languages operate in much the same fashion.

Chaptes 6: Proceduses and Functions

Chapter 7

Example Programs

N ADOL programmer's Reference Manual 7.1

This chapter describes each of the example programs supplied with NADOL
in detail. Following the flow of each program is an excellent way for the
user to become more familiar with NADOL. We recomend that you
experiment with the programs supplied. Try various changes and view
their effects. It is a good idea to first make a copy of your master disk
before saving any changes that you may make. See the prologue to the
NADOL manual for instructions on duplicating your original diskette.

In order to demonstrate the flexibility of NADOL, the first example will
have nothing at all to do with diskettes. It is an entertainment program,
of sorts, which will play the familiar game of brick-out. As simple a task
number of the built in procedurequ_éFte' used at one point or another in this
program, making it an ideal example.

The comments to the right of the listing are no present in the actual
program on your diskette. They are provided as a running commentary of
the operations being performed at each step in the program.

; LORES BRICK-OUT GAHE

DEFINE INTEGER CURRENTH,CURRENTY Define all of the variables
DEFINE INTEGER SIDECOL,PDLCOL,BALLCOL which will be used during
DEFINE INTEGER DELTAX,DELTAY,PADDLE the program.

DEFINE INTEGER OLDPDL,OLDX,0LDY,SCRNUAL It is a good idea to use
DEFINE INTEGER HIT,OLDSCORE,SCORE,GAHE longer names which make

DEFINE INTEGER OURY,OQURK,KEY sense to the user.
SIDECOL=4 Set the color of the border.
PDLCOL=S The color of the 'paddie’.
BALLCOL=13 The color of the ‘ball’.
This procedure draws a
PROCEDURE DRAML INE line of colored dots.
OURY=1 Start at row 1.
WHILE OURY<39 Continue to the bottom.
COLOR=(0URY/2 HOD 2)+1 Set the color of the dot.
UL IHE(X1,0URY, OURY+2) Draw a two block line.
OURY=0URY+2 Move down 2 for the next
ENDUHILE block, and loop until done.
ENDPROC End this procedure.

Chapter 7: Example Programs

N ADOL programmer's Reference Manual

PROCEDURE DRRHSCRN
LORES
OURK=20
HHILE OURR<3S
DRAUL IHE{OURK)
OURK=0URK+2
ENDUHILE
COLOR=5DECOL
HLINE(D,0,39)
ULINE(39,0,39)
HLIHE(D,39,39)
ULIHE(D,0,39)
ENDPROC

GAHE=1
WHILE 1
IF GAHE
HOHE
DRAUSCAN
BEEP(200, 40)
CURRENTH=15
CURREWTY=11
DELTAX=~1
QELTAY=0
OLOPDL=1
HiT=1
OLDR=4
OLDY=4
SCORE=0
OLDSCORE=1
GAHE=0
ENDIF

7.2

This procedure draws the
game board, using the
DRAWLINE procedure.
Set LORES graphics mode.
Start at column 20.

Draw until column 35.
Draw the current line.
Step by 2.

Loop back until all done.
Set the new color.

Draw the box around the
playing field.

End this procedure.

Now that all of the
variables and procedures
have been defined, we
begin the main program.
Causes a loop forever.

If a new game is starting...
Clear the screen.

Draw the playing field.
Notify the user via a beep.

Set the starting conditions.

Chapter 7: Example Programs

N ADOL programmers Reference Manual

IF SCORE<>OLDSCORE
GOTOKY(4,21)
PRINT “SCORE=";SCORE
OLDSCORE=SCORE
ENDIF

PRDDLE=PDL(0)/7+1

IF PADDLE>33
PADDLE=33
ENDIF

IF (PADDLE<>OLDPDL) OR (HIT<>D)
COLOR=0
ULINE(1,DLDPDL,OLDPDL+S)
OLDPDL=PADDLE
COLOR=PDLCOL
ULINE(1,PADDLE, PADDLE+5)
HiT=0

ENDIF

CURRENTX=CURRENTK+DELTRY
CURRENTY=CURRENTY+DELTRY

IF CURRENTY<1
CURRENTY=1

ENDIF

IF CURRENTY>38
CURRENTY=38

ENDIF

IF CURRENTR<1
CURRENTX=1

ENDIF

IF CURRENTH>38
CURRENTK=38

ENDIF

7.3

If the score has changed...

Print the new score.

Read the game controller.

If the value is too large
for our needs, chop it back
down to size.

If the paddle has moved,
the ball hit the paddle...

Erase the old paddle.
Remember the new value.

Draw the new paddle.
Clear the ‘hit’ flag.
Move the ball in the X and

Y directions.

If Y is too small...
Put it back on the screen.

If Y is too large...
Put it back on the screen.

If X is too small...
Put it back on the screen.

If X is too large...
Put it back on the screen.

Chapter 7: Example Programs

N ADOL programmer's Reference Manual

SCRANUAL=LSCRN{CURRENTX, CURRENTY)
COLOR=0

PLOT{OLDK,OLDY)

COLOR=BALLCOL

PLOT(CURRENTX, CURRENTY)

IF OLDR=1
HIT=1
EHDIF

OLDK=CURRENTH
OLDY=CURRENTY

{F CURRENTX=1

7.4

Read color under the ball.
Erase the old ball position.
Plot the new ball position.
If ball was in column 1...

Then we may have hit the

paddle.

Remember the new
ball position.

If ball is in column 1...

IF (CURRENTY<PRDDLE) OR (CURRENTY>PADDLE+4) OR (SCORE=152)

BEEP(100,50)
GOTOKY(20,21)
IF SCORE<S
PRINT “UNCOORDIHRTED"
ELSE
IF SCORE<20
PRINT *TRY HARDER!"
ELSE
IF SCORE<S0
PRINT “NOT BAD..."
ELSE
IF SCORE<100

PRINT “GETTING BETTER"

ELSE
IF SCORE<152

PRINT "ABOUE AVERAGE"

ELSE
PRINT “EXCELLENT!®
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

Game may be over.

Print out the final score
and give the user a
rating of his/her
performance based on
that score.

Chapter 7: Example Programs

N ADOL programmer's Reference Manual 7.9

GOTORY(2,23) Wait for a key to be pressed.
PRINT “PRESS ANY KEY TO PLAY AGRIN“;

KEY=READ(1)

GRAHE=1 Then start over again.

ELSE The balf was hit correctly.
BEEP(170,2) Make a noise.
DELTAK=-DELTAY Reverse the X direction.
DELTAY=CURRENTY-PRDDLE-3 Set the new Y speed.

IF DELTAY»=0
DELTRY=DELTAY+1
EHDIF
ENDIF
ENDIF
IF (SCRNUAL=1) OR (SCRNUAL=2) If we hit a block...

COLOR=0 Erase ali of it.

UL INE(CURRENTX, (CURRENTY-1)/2%2+1, (CURRENTY-1)/2%2+2)

SCORE=SCORE+1 Give the user a point.

BEEP(250,2) Make a noise.

DELTAX=-DELTAK Reverse direction.

ELSE Otherwise, if ball is moving

IF (CURRENTY¥=38) AND (DELTAX=1) forward and at back...
BEEP(70,2) Make a noise.
DELTAX=-DELTAX Head back to the user.

ENDIF

ENDIF
IF (CURRENTY=1) OR (CURRENTY=38) If at upper or lower edge...
BEEP(70,2) Make a noise.
DELTRY=-DELTRY Go the other direction.
ENDIF
EHOUHILE Always loop back for more.

Some possible ideas for instructional changes that the user could make
would be:

1) Muitiple balis per game.

2) Two player game (Think about using two element arrays).

3) Multiple skill levels.

The possibilities are almost limitless!

Chapter 7: Example Programs

N ADOL programmer's Reference Manual 7.6

Our second example is a color disk mapper. It will display the Volume
Table Of Contents (VTOC) for a DOS 3.3 diskette in color on the screen.
Then it proceeds to display the location of all of the sectors used by each
file on the disk in different colors. This program is useful and educational
because it shows how easily NADOL can be applied to a real world
application.

DEF INE INTEGER TRRCK,SECTOR,COUNT Define all variables.
DEFINE INTEGER ERR,Y,TENP,LOC,POS,COL

DEFIKE INTEGER DTRACK,DSECTOR, TTRACK, TSECTOR

DEFINE BYTE[2] COLORS

DEF IHE BYTE[40] NAME

DEF IHE BYTE[255] UBUFF,TBUFF,CBUFF

LORES Set LORES graphics.
COLORS[1]= 10 Set the two colors used
COLORS[2]= 15 to display the VTOC.
SETFORHAT{0,RDDR16,0DATA16, INT16) Use DOS 3.3 format/interlv.
TRRCK=$11 VTOC is on track $11,
SECTOR=$0 sector 0.

COUNT=1 We're reading one sector.
RSECT{UBUFF, TRRCK,0,SECTOR, COUNT,6,1,ERR) Read in the sector
TRACK=0 Now start at track 0.

WHILE TRACK<=34 Loop until track 34.

TEHP=UBUFF[$39+TRACK*4]+UBUFF[$36+TRACK*4]%256 Get track bits.

Chapter 7: Example Programs

N ADOL programmer's Reference Manual

IF (TEHP=0) OR (TEMP=$FFFF)

IF

TEHP=0

COLOR=COLORS[1]

ELSE

COLOR=COLOAS[2)

ENDIF

HL
ELSE

INE(O, TRACK, 15)

¥=0

HH

ILE ¥<16
{F TEHP HOD 2
COLOR=COLORS[2]

ELSE

COLOR=COLOAS[1]

ENDIF

TENP=TEHP/2

PLOT(Y, TRACK)

Yuif+]

ENDHHILE
ENDIF
TRACK=TRACK+1

ENDUHILE

coL=1

COLOR=COL

DTRACK

=$11

DSECTOR=$F

HHILE (DTRACK<>0) AND (DSECTOR<>D)

COUN

RSECT(CBUFF,DTRACK,0,DSECTOR, COUNT,6,1,ERR)

T=1

P0OS=11

HHILE (CBUFF[PDS]<>0) AND (P0S<255)

IF

CBUFF[POSI<>$FF
TTRRCK=CBUFF[POS])
TSECTOR=CBUFF[P0S+1]
COPY(CBUFF[P0S+3],HANE, 25)
PRINT INRHE
COUNT=1

RSECT(TBUFF, TTRACK,0, TSECTOR, COUNT, 6, 1,ERR)

7.7

Is it ail used or unused?
If all vsed...
Use color 1.
Otherwise...
Use color 2

Draw a line for whole track.
We have to plot each one...

Loop for all sectors.
If the sector is free...
Use color 2.
Otherwise...

Use color 1.

Get rid of that bit.
Plot the dot.
Move to the next dot.

Move to the next track.

Now the VTOC is plotted,

so we move on to plotting
the file locations.

Start with color 1.

Make it the current color.
Directory starts on track $11
sector $F.

Run until the links are 0...

Read the sector.
Start at position 11.
Until all names used up...

If not a deleted file...

Get track for TSL.

Get sector for TSL.

Move the name.

Print the name.

Read the sector.

Chapter 7: Example Programs

N ADOL programmer's Reference Manual 7.8

L.OC=12 Start at position 12.

PLOT{TSECTOR+20, TTRRCK) Mark the TSL sector.

HHILE (LOC<255) AND ((TBUFF[LOCJ<>0) OR (TBUFFLLOC+11<>0))
PLOT(TBUFFILOC+1]+20, TBUFFILOC]} Plot each sector of the file.

LOC=LOC+2
ENDUHILE
COL={COL+1) HOD 15 Move to the next color.
IF COL=0 Skip color 0, since biack
COL=1 doesn't show up.
ENDIF
COLOR=COL Set new color.
ENDIF
POS=P0S+$23 Move to next name.
ENDUHILE
DTRACK=CBUFF[1] Locate next track/sector
DSECTOR=CBUFF{2] for rest of catalog.
ENDUHILE

This program shows how a very small program can perform complex tasks
involving the disk drivce with very littie effort. This program shows how
a directory can be followed to look at the information for each and every
file on the disk. In this case the information was displayed graphically on
the screen. But it could just as easily have been used to edit each program
and the way that each was arranged on the diskette.

Some enhancements which could be added to this program are:
1) Ask the user to insert a disk before starting.

2) Use HIRES graphics for the display.

3) Automatically mark tracks $0-$2 and $11 as used.

Another source of programs to examine are the programs which make up

Nibbles Away Il and its associated utilities. Each of these may be loaded
into the editor and viewed just like any other program.

Chapter 7: Example Programs

Built-in Statements

N ADOL programmer's Reference Manual 8.1
The following chapter describes all of the built-in functions,
procedures and statements in NADOL. Many examples are provided to make

the function of each clearer. In order to avoid confusion, the following
layout is used for each description:

Purpose: A short description of the statement’s function.

Syntax: The syntax for using the statement goes here.
Braces (} are used to identify optional fields.

Remarks: A description of any parameters, and any additional helpful
information about the statement.

Any parameters enclosed in double triangles «» MUST be names
of variables when the statement is used.

Example: This section provides a view of the actual usage of the
statement and what its effect s,

Appendix XX provides a quick-reference to all of the statements
described in the chapter.

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.2

AUX MOVE PROCEDURE
Purpose: Move data to or from the auxiliary memory in an Apple //e or
and Apple //c.

Syntax: AUXMOVE(appleeaddr,auxeaddr length direction)

Remarks: «appleeaddr» The name of the variable which specifies
the starting address in the apple for the
move,

auxeaddr A number in the range $0-$§B7FF. This is the
starting address in auxiliary memory for the
move.

length The number of bytes to move to or from
auxiliary memaory.

direction Specifies whether data should be
transferred to or from auxiliary memory:
0= From auxiliary memory
1= To auxiliary memory

ﬁb This procedure ¢can make use of up to 46k of the available
auxiliary memory.

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.3

BEEP PRACCEDURE

Purpose: Sounds a tone from the built-in speaker.

Syntax: BEEP(tone,time)

Remarks: tone This is a number from 0 to 255 which
determines the frequency of the sound. Zero is
the lowest frequency, 255 is the highest.

time This is a number from 0 to 255 which
determines the duration of the tone. Zero is the
shortest, 255 is the longest.

Example: The following program:

DEFINE INTEGER |

1= 50

HHILE 1<=100
BEEP(1,30)
I=1+10

ENDURILE

Will cause 6 tones to be produced, each one higher in pitch than
the last.

Chapter 8: Built—in Statements

N ADOL programmer's Reference Manual 8.4

Purpose:
Syntax:

Remarks:

Example:

CALL

PROCEDURE

Executes a machine language subroutine.
CALL(address,accumulator xeregister yeregister,status)

«address» The name of the variable which specifies the
address of the subroutine to be executed.

«accumulators The name of the variable containing the value
to be passed in the accumulator. On exit the
accumulator value will be returned here.

«xeregisters The name of the variable containing the value
to be passed to the X register.

«yeregisters The name of the variable containing the value
to be passed to the Y register.

¢statusy The name of the variable containing the value
to be passed to the status register.

The routine being called should end with an RTS instruction.
Zero page locations $0 through $1F are available for use by the
routine. Any other memory should be used with care.

The following program:

DEFIHE INTEGER ACC,X,Y,STRT

d=1
CALL(HENORY[$FBIE],ACC,K,V,STAT)
PRINT ¥

Would call the monitor paddle read routine at $FBI1E. This
routine returns the paddie value in the Y register which would
be placed in the variable Y. PrintingY prints the paddle value.

Note that even though no values are passed to the accumulator

or the status register, variables must still be used for these
parameters.

Chapter 8: Built-in Statements

N ADOL programmer’s Reference Manual 8.9

CATALOG STATEMENT

Purpose: Displays a list of all files on a data diskette, and the amount of
free space on that diskette.

Syntax: CATALOG

Remarks: The WORKDRIVE command can be used to select the slot and
drive which will be used by this command.

CLEAR

Purpose: Clears all variables.

STATEMENT

Syntax: CLBAR

Remarks: This statement also clears all user defined procedures and
functions, so if it is used from within a program, ail user
defined procedures and functions will become inaccessible.

CLREOL . STATEMENT

Purpose: Clears all text to the right of the current cursor location,

Syntax: CLREOL

Remarks: This command does not move the cursor.

Chapter 8: Built—in Statements

N ADOL programmer's Reference Manual 8.6

CLREOP STATEMENT

Purpose: Clears all text to the right and below the current cursor
location.

Syntax: CLREOP

Remarks: This command does not move the cursor.

Chapter 8: Built—in Statements

N ADOL programmer's Reference Manual 8.7

COLOR- STATEMENT

Purpose:

Syntax:

Sets the color used for low resolution graphics.

COLOR= expression

Remarks: The value of expression may be from O to 15, corresponding to

Example:

the following colors:

0= Black 8= Brown

1= Magenta 9= Orange

2= Dark Blue 10= Gray 2

3= Purple 11=Pink

4= Dark Green 12= Light Green
5= Gray | 13= Yellow

6= Medium Blue 14= Aquamarine
7= Light Blue 15= White

If expression is greater than 15 then expression mod 16 is used
for the color value.

The following program:

DEFINE INTEGER DIR,POS,COL

BiR=1

LORES

UHILE 1
COLOR=COL
HLINE(OD,POS,39)
ULINE(POS,0,39)
COL=(COL+1) HOD 16
POS=POS+DIR
iF (P0S=0) OR (P0S=39)

DiR=-DIR

ENDIF

ENDUHILE

Would draw a series of horizontal and vertical bars back and
forth on the screen until ctrl-c is pressed to halt the program.

Note the use of the UHILE 1 statement to create a loop which
will never terminate, giving a continuously running program.

Chapter 8: Built-in Statements

N ADOL programmer‘s Reference Manual 8.8

CONVERT

PROCEDURE

Purpose:

Syntax:

Remarks:

Converts a byte array containing ASCII text into an array of
hexadecimal or decimal values.

CONVERT(source,destination,type,size count 1 count2)

«sources

«destinations

type

size

«countls

«count2»

The name of the byte array containing the ASCH
text to be scanned. The text must be
terminated by a zero value.

The name of the array where the converted data
will be placed.

Determines whether scanning should take place
in decimal or hexadecimal:
0= Hexadecimal i= Decimal

Determines if the values placed in dest should
be bytes or integers:
0= Integers 1= Bytes

The name of the variable where the number of
characters scanned source will be returned.

The name of the variable where the number of
values placed into dest will be returned.

This procedure can be used to convert a string entered by a user
into a data array which is more readily usable by the other
built-in functions.

Chapter 8: Built—in Statements

N ADOL programmer’s Reference Manual 8.9
Example: The following program:

DEF INE BYTE[30] STRING,RRARAY

DEFIHE INTEGER Ct,C2

PACK STRING WITH "D5 AA 96"

CONVERT(STRING,ARRAY,0,1,C1,C2)

DISPLAY(RARRAY,C2)

Would print:

DS RR 96

Showing that the text string had been converted to hexadecimal
values in ARRRY which are usable by NADOL.

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.10

COPY

PROCEDURE

Purpose:
Syntax:

Remarks:

Example:

Copies a block of data from one location to another.
COPY(source,destination,length)

«sources The name of the variable from which the data
should be copied.

«destination» The name of the variable where the copied data
will be placed.

length The number of Hytes to be copied.

This procedure can copy data between any two locations in the
machine’s memory, whether they are within the same variable
or not.

The following program:

DEFINE BYTE[30] HINE,YOURS

PACK HINE WITH "THIS IS HY STRING"

COPY(RINE[11],YOURS,6)

PRINT {YOURS

Would print:

STRING

Showing that the six bytes (5 characters plus the terminating

zero for a string) starting at position 11 in HINE were copied to
YOURS at its start.

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.11

Purpose:

Syntax:

DEFINE ______ Srerew

Allocates space for one or more variables.

{DEFINE) type {Inl) name (name).....

Remarks: type The type of variable being defined, either BYTE or

Example:

INTEGER.

<names The name of the variable. It canbeupto 8
characters in length.

The optional subscript (In]) defines the number of elements to
be set astde for this variabie. The number specified will be the
highest element set aside, including element zero, giving n+!
elements total. If the subscript is left off, 1 element is set
aside, and array operatfons may not be performed on the
variable.

A variable of the specified type will be created for each of the
names listed, and then all of its elements are set to zero.

when running a program, NADOL scans the entire program first
to find all of the DEFINE statements. This means that DEFINE
statements may be anywhere in a program, before or after they
are referenced.

The following statement:

DEFINE INTEGER[8] HINE, HIS,HERS

Would create three 9 element (0-8) integer arrays, one named
HINE, one named HiS and one named KERS.

The statement:
BYTE SINGLE

Would create a variable named SINGLE which would consists of
one element of one byte.

Chapter 8: Built—in Statements

N ADOL programmer's Reference Manual 8.12

Purpose:
Syntax:
Remarks:

Example:

DELAY

Pauses for a specific amount of time.

STATEMENT

DELAY(expression)

expression The number of milliseconds to pause.
The statement:

DELAY(40%500)

Would detay 20000 milliseconds, which is 20 seconds.

DEL ETE COMMAND

Purpose:
Syntax:

Remarks:

Removes a file from the current work disk.

DELETE filename

filename Either a name of up to twelve characters enclosed
in quotes or the name of a variable which is a byte
array containing a file name.

This procedure will remove a file and reclaim the space used by

it on the current diskette. Care should be taken with this
command since once a file is deleted, it cannot be recovered.

Chapter 8: Built—in Statements

N ADOL programmer's Reference Manual 8.13

DISASM STATEMENT

Purpose: Displays a disassembled listing of machine code.

Syntax: DISASM(start,label lines,offset)

Remarks: «start» The name of the variable which defines the first
location to be disassembled.

fabel The value which will be shown at the left edge of
the disassembly and used for the display of
relative addresses.

fines The number of tines to display.

«offsets The name of the variable where the offset of the
next instruction from the start of the current
disassembly will be placed. This is used to
determine the next location to disassemble.

On an Apple //c¢ all of the extra instructions of the 65C02
microprocessor will be correctly displayed.

Example: The following statements:
DEFINE INTEGER LOC,OFFSET

LOC=$F800
DISASH(MEMORY[LOC],LOC, 10,0FFSET)

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.14

Would display the following:

FB00- 4A LSR

F8o1- 08 PHP

FB802- 20 47 F8 JSR $F647
F805- 28 PLP

F806- A9 OF LDR #$0F
F808- 90 02 BCC $FaoC
F80R- 69 EO ADC #$ED
F8oC- 85 2E STR $2t
FBOE- BY 26 Lo ($26),Y
F810- 45 30 EOR $30

Then the statements:

LOC=LOC+OFFSET
BISASH(NEHORY[LOC],LOC, 10,0FFSET)

Would display the next 10 instructions, which would be:

F812- 25 2E AND $2E
F814- 51 26 EOR ($26),Y
F816- 91 26 STR ($26),Y
F818- 60 RTS

FB19- 20 00 F8 JSR $FB00
FeiC- C4 2C cPy g2
FBIE- 80 11 BCS $F831
Fg20- C8 IHY

FB21- 20 OE F8 JSR $FBOE
F824- 90 Fé BeC $FBIC

This shows how offset can be used to display multiple sections
of sequential code.

Chapter 8: Built—in Statements

N ADOL programmer’s Reference Manual 8.15

D I S pL AY PROCEDURE

Purpose: Displays a block of data in hexadecimal.

Syntax: DISPLAY(start,length)

Remarks: «starts The name of the variable which defines the first
location to be displayed.

length The number of Jytes to display.
The bytes will be displayed with a 4 digit label, in groups of 16
bytes per line. Pressing the SPACE bar will pause the listing,
and ctri-C will stop the listing.

Example: The statement:

BISPLAY(RBUF, 256)

Would show the first 256 bytes of RBUF on the screen.

EDI T CoMMAND

Purpose: Invokes the built-in program editor.

Syntax: EDIT

Remarks: See chapter 4 for full instructions.

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.16

F I LL PROCEDURE

R S N T S N P WP e T DR S NS
Purpose: Fills a section of memory with a value.

Syntax: FILL(start,lengthvalue)

Remarks: «starts The name of the variable which determines the
start of the area to be filled.

fength The number of sytes to fill.

value The value from O to 255 to fill with.
Example: The statement:

FILL(RBUF[200], 100, $05)

Would place the value $05 in 100 bytes of RBUF starting with
the 200th element of RBUF.

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.17

FIND

Finds a specified pattern with the ability to ignore bit 7 and

Purpose:

Syntax:

Remarks:

PROCEDURE

perform wildcard matching.

FIND{start lengthl pattern length2,7eflag,wildeflag,offset)

«starts

length!

«patterns

fength?2

Teflag

wildefliag

«offsets

The name of the variable which determines the
start of the area to search through.

The number of Aytes to search.

The name of the variable containing the pattern to
search for.

The length of the pattern, in syfes

Determines whether bit 7(the most significant bit)
will be used in the comparison.
0= Bit 7 is used 1= Bit 7 is ignored

Determines whether wild cards will be used during
the search. A ‘zero’ value disables wildcards. A
‘one’ value enables wild cards, causing any zero
values in patiern to match any value in the range
being checked.

The name of the variable where the offset of the
matched pattern will be returned. If no match is
found, -1 will be returned.

FINDs using either ‘bit 7 ignore’ or ‘wild cards’ take longer to
execute than those without.

Chapter 8: Built—in Statements

N ADOL programmer’s Reference Manual 8.18

Example:

The following program:

BYTE[S50] YOUR
BYTE[8] SPOT
INTEGER POS

PACK YOUR WITH “HERE HE GO AGRIN TO THE STORE®
PACK SPOT WITH “RGAIN"

F IND(YOUR, LENGTH(YOUR), SPOT, LENGTH(SPOT), 0,0, P0S)
PRINT POS

Would print the number 11, since the word ‘again’ was found at
the eleventh position in YOUR:

FLASH STATEMENT

Purpose:
Syntax:

Example:

Sets flash mode for printed characters.
FLASH
The following program segment:

HORHAL

PRINT "HELLO®;
FLASH

PRINT "THERE®;
IHUERSE

PRINT “HOUW RRE °;
NORHAL

PRINT "You?*

Would print HELLO normally, THERE flashing, HOW ARE in inverse
and YOU? normally.

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.18A

FILTER ~~ Proceouse

Purpose Copies data into the write buf fer, passtng it through a'f Hter
to remove unwanted values.

Syntax: FILTER(«start» length,«tables «numbers)

Remarks: «starts The name of the variable which defines the start
of the location to begin taking data from.

length The number of bytes to pass through the ‘filter’.
¢tables The name of the variable specifying the ‘filter
table to use.

<number» The number of bytes filled in the write buffer.

This procedure is used to move data from the read buffer to the
write buffer prior to sending it to the disk drive. The ‘filter
allows all bytes which are not valid disk bytes to be removed
from the data.

A ‘filter’ is a table in memory, usually created with the MAKE
procedure. It is 256 bytes in length, one location for each
possible value of a byte. if the contents of a location is 0, then
that byte will not be passed to the write buffer. If the
contents is non-zero, then the contents of the table will be
passed to the write buffer. This actually allows bytes to be
translated into other bytes as they are written out to the
diskette.

Chapter 8: Built—in Statements

N ADOL programmer's Reference Manual 8.19

Purpose:
Syntax:

Remarks:

Example:

FORMAT

PROCEDURE
Frmat range rtcks. o T
FORMAT (first last,volume,interleave nsect slot.drive error)
first The first track to format.

last The 1ast track to format.

volume The volume number to be recorded on the diskette.

«interleaves The name of the byte array containing the numbers
for the sectors on the tracks to be formatted.

nsect The number of sectors per track.
slot The slot of the disk drive to format.
drive The drive number to format.

Lerrors The name of the variabie to return the result code
in. Avalue of O signifies that no errors took place.

Note that this command will erase any data previously present
on the track(s) being formatted.

The statement:

FORMAT(0,34,0,FORM16,16,6,1,ERR)

would format the entire disk in slot six, drive one, using the
predefined variable FORH16 for the Interleave table, with 16

sectors per track and return any error code in the variable
ERROR.

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.20

FREE

Purpose:
Syntax:

Remarks:

Example;

Purpose:
Syntax:

Remarks:

FUNCTION

Returns the amount of space available for programs and data.
variable= FREE(x)

X 15 a dummy expression used only as a place holder. 0 is the
normail value used.

The statement:
PRINT FREE(O)

Would print the amount of available space for additional data
and program.

Defines a user subroutine which returns a value to the calling
program.

FUNCTION name

Chapter 6 contains full details on the use of procedures and
functions.

Chapter 8:Built-in Statements

N ADOL programmer’s Reference Manual 8.21

GOTO

STATEMENT

T S S S S I

Purpose:
Syntax:

Remark:

Example:

Transfers program execution to another location.

GOTO labelname

Program flows begin following the specified label statement.
The GOTO statement is provided only for those cases where it
is absolutely necessary. The structured nature of NADOL
allows almost all programming situations to be overcome
without using the GOTO statement.

The following program:

LABEL THERE

PRINT “FOR EVER RND EVER"

GOTO THERE

would print FOR EVER AND EVER continuously on the screen
unti} the program was stopped with a ctri-C.

Chapter 8:Built—in Statements

N ADOL programmer's Reference Manual 8.22

GOTOXY PROCEDURE

Purpose:
Syntax:

Remarks:

Example:

Moves the cursor to a new location on the screen.
GOTOXY(xy)

b { The new horizontal position in the range 0 to 39.
y The new vertical position in the range O to 23.

This procedure does not place a cursor on the screen, it just
sets the next location for an input or print operation.

The following program:

DEFINE INTEGER Y
¥=0
HHILE ¥<10
GOTOKY(20,Y)
PRINT ¥
Y=y+1
ENDHHILE

Would print the numbers 0 through 9 on consecutive lines of the
screen, indented twenty spaces.

Chopter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.23

HCOLOR

Sets the color for high resolution plotting.

Purpose:
Syntax:

Remarks:

Example:

PROCEDURE

HCOLOR= expression

expression is a value from O to 7 corresponding to the
following colors:

0= Black1 4=Black2
1= Green S5=0range
2= Violet 6=Blue

3= Whitel 7=white2

If expression is greater than 7, expression MOD 8 15 used for the
color vaiue.

The following program:

DEFINE INTEGER X
HIRES
¥=0
HHILE <280
HCOLOR= X/8
HPLOT ¥,0 TO X, 191
Hugel
EHDUHILE

would draw a series of vertical bars on the hires screen, each
one 8 dots wide.

Chapter 8:Built—in Statements

N ADOL programmer's Reference Manual 8.24

Purpose:
Syntax;

Remarks:

Example:

HEXPACK _ smrenew

Reads HEX data into a byte array, with an optiona) checksum.
HEXPACK name WITH “text” (, checksum }

«name» The name of the array where the converted data
will be placed.

text A series of ASCII characters which represent the
hexadecimal form of the data which is Lo be placed
in name.

checksum An optional value which is used to verify that the
characters in text have been typed in correctly.

This statement is normally used to enter raw data, or machine
language routines. Since the main use of this statement will be
for entering large amounts of raw data, the checksum has been
provided as an optional method of verifying that no
typographical errors exist. The checksum is computed by
stepping through the each value, exclusive ORing each with the
previous, and adding one to the result at each stage.

The following program:

DEF INE BYTE[40] DARTA

HEXPACK DATR WITH “CBCSCCCCCFO0",$C2
PRINT !DATA

Would print:

HELLO

On the screen, since that was the ASCI) equivalent of the HEX
data which was entered.

Chapter 8:Built~in Statements

N ADOL programmer’s Reference Manual 8.25

HIRES STATEMENT

Purpose: Initializes high resolution graphics mode.

Syntax: HIRES

Remarks: This command turns on the hires screen and clears it to black.
This command should be used before any hires graphic
commands are performed, or unpredictable resuits may occur.
Applesoft basic in ROM is required to use this statement.

Example: See the HCOLOR statement.

PROCEDURE

HLINE

Purpose: Draws a line on the lores screen.

Syntax: HLINE(x1,y!x2)

Remarks: xl X coordinate of the starting point, in the range 0-39.
yl Y coordinate of the starting point, in the range 0-47.
x2 X coordinate of the ending point, in the range 0-39.
x2 must be greater than x1.

Example: See the COLOR statement.

HOME -

Purpose: Clears the screen and places the cursor in the upper left hand
corner of the screen.

Syntax: HOME

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.26

HPLOT __ smwreser

Purpose: Plots points or draws lines on the hires screen.

Syntax. HPLOT {(x,y) (TOxy}...
Remarks: x The x coordinate in the range 0-279,
y The y coordinate in the range 0-191.
If only one coordinate is specified then a dot is plotied.

If only 2 TO 1,y 1s specified then a line will be drawn from the
last plotted point.

If a coordinate and one or more secondary coordinates Is
specified then a string of connected lines will be drawn
between all of the specified points.

Example: See the HCOLOR statement.

Chapter 8:Built-in Statements

N ADOL programmer‘s Reference Manual 8.27

HSCRN FUNCTION

Purpose:
Syntax:

Remarks:

Returns the value of a dot on the hires screen.
variable= SCRN(z.y)

X The x coordinate of the point to read, in the range of O to
279.

y The y coordinate of the point to read, in the range of O to
191

The value returned will be a 1 or a 0, depending on whether the
specified dot was on or off. The color of the dot is not
returned, since colors are determined by whether or not dots
are next to each other, and whether they are in odd or even
columns.

Chapter 8:Built—in Statements

N ADOL programmer's Reference Manual 8.28

IF, ELSE and ENDIF STATEMENT

Purpose:

Syntax:

Remarks:

Example:

Alters program fiow based on a condition,
IF expression
{ statements executed on true }
{ ELSE }
{ statements executed on false)
ENDIF
If the value of expression is non-zero, then the statements up
to the ENDIF or up to the optional ELSE will be executed. If
expression is zero, then the statements following the ELSE
statement will be executed if it is present, otherwise program
execution will continue following the ENDIF.
IF-ELSE-ENDIF blocks may be nested up to 8 levels deep.
The following program segment:
IF You > 10
PRINT "GREATER THAN 10®
ELSE
PRINT "LESS THRN OR EQUAL 70 10"
ENBIF

Wwould print GREATER THAN 10 if the variable YOU was greater
than 10, or LESS THRN OR EQUARL TO 10 otherwise.

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.29

I N# STATEMENT

Purpose: Takes program input from a peripheral slot.

Syntax: IN# expression

Remarks: expression may be a value from O to 7, and corresponds to the
peripheral slots in the computer. A value of 0 will return input
to the keyboard.

Example: The statement:
IN8 2

would Instruct NADOL to begin taking input from the peripheral
in slot number 2.

INIT

CoMMAND
Purpose: Formats a diskette for storage of programs and data.

Syntax: INIT name

Remarks: The name specified may be up to 12 characters enclosed in
quotes or the name of a byte array containing a file name. ft
will be placed on the diskette and displayed whenever a
CATALOG command is performed.
The current work drive is used for this command.

Example: The statement:
INIT “NEUDISK®
Would format a diskette in the current workdrive, making it

available for storage of NADOL data. The name on the disk
would be set to NEHDISK.

Chapter 8:Built-in Statements

N ADOL programmer’s Reference Manual 8. 30

Purpose:
Syntax:

Remarks:

Example:

INPUT ~ Proceoure.

Reads ASCil data from the keyboard into a byte array.

INPUT(name,max,count)

«names The name of the byte array to place the data read
from the keyboard into. The text will be
terminated by a zero.

max The maximum number of characters to allow.

«counts The name of the variable where the count of the
number of characters read is to be returned.

During an tnput statement, the user may use the backspace key
to delete errors.

The <RETURN> key accepis a response.

If the user types an <ESC>, the input will abort and set count
to-1.

If the user attempts to type in more than max characters, the
extras will be ignored and the cursor will not move on the
screen.

The statement:

INPUTCENPTY, 20, COUNT)

would prompt the user for a siring with a limit of 20
characters. The data typed by the user would be placed into the

array named EHPTY, and the number of characters entered would
be returned in COUNT.

Chapter 8:Built-in Statements

N ADOL programmer’s Reference Manual 8.31

I NVERSE STATEMENT

Purpose: Sets inverse mode Tor all printed characters.

Syntax: INVERSE

Example: See FLASH.

LABEL Swmenent

Purpose: Sets a location which can be branched to with a GOTO
statement.

Syntax: LABEL name

Remarks: name is up to eight characters which define the name of the
location marker being set.

A 1abel may not be defined within an IF-ELSE-ENDIF or
WHILE-ENDWHILE block.

Example: See the GOTO statement.

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.32

LCMOVE PROCEDURE

Purpose: Moves data to or from a language card.

Syntax: LCMOVE(memeaddress,Iceaddress. length,direction)

Remarks: «memeaddresss The name of the variable which specifies
the start of the area to transfer.

Iceaddress The value of the starting location for the
transfer, in the range $0-$2FFF.

length The number of fytes to transfer to or from
the language card.

direction Specifies whether data is transferred to or
from the language card:

0= From language card
1= To language card

LENGTH Fowerion

Purpose: Returns the length of the text in a byte array.

Syntax: variable- LENGTH(name)

Remarks: «name» The name of a byte array containing ASCII text
terminated with a zero.

Example: The following program:
DEFINE BYTE[30] :LUNCH

PACK LUNCH WITH "SAHDWICHES RND SODR"
PRINT LENGTH{LUNCH)

Would print the value 19, which is the length of the string
placed into the variable LUNCH.

Chapter 8:Built-in Statements

N ADOL programmer’s Reference Manual 8.33

L IST CoMMAND

Purpose: Displays the current program.

Syntax: LIST

Remarks: The <SPACE> bar will pause the 1isting and ctri-C will abort
the 1isting.

Chapter 8:Built—in Statements

N ADOL programmer’s Reference Manual 8. 34

LOAD COMMAND

Purpose:
Syntax:

Remarks:

Example:

Loads a file from the current work diskette.

LOAD filename { AT address)

filename Up to twelve characters in double quotes, or the
name of the byte array containing the name of the
file to load.

«address» The name of the variable defining the location at
which to begin loading the data.

If the AT option is left off, the file is loaded as a program into
the current program space and all variables are cleared.

The AT option specifies an address at which to load the
specified file. In this case, the variables are not cleared. This
is useful for loading data such as hires pictures.

The following statement:

LOAD "PROGRAM"

Would toad the file named PROGRAI from the current workdrive.
The statement:

LORD “PICTURE® AT HENORY[$40001

Would load the file named PICTURE at memory address $4000.

If a LOAD statement which loads a program is executed from
within a running program, the file will be loaded normally, ail
variables will be cleared, and the new program will begin

running at its start.

This allows one program to transfer control to another.

Chapter 8:Built-in Statements

NADOL Programmer’s Reference Manual 8.3 5

LORES

STATEMENT
Purpose: Initializes lores graphics.

Syntax: LORES

Remarks: Enables and clears the lores screen. This command should be
executed before performing any lores graphics commands.

The cursor will be moved to the lower left hand corner of the
screen when this command is executed.

Example: See the COLOR statement.

FuNCTION
Purpose: Returns the color of a point on the screen.

Syntax: variable= LSCRN(x,y)

Remarks: x The x coordinate of the point to check, in the range O to
39.

Yy The y coordinate of the point to check, in the range O to
47.

This function returns a value from O to 15, corresponding to the
colors listed in the table under the COLOR statement.

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.36

MAKE

PROCEDURE

Purpose:
Syntax:

Remarks:

Creates a filter in the specified array.

MAKE(address,length start. numezeroes,bitelength)

«address»

length

start

numezeroes

bitelength

The name of the variable which determines the
start of the area in which to place the fiiter.

The number of oyres to create.

The first value to use in making the filter. The
remaining values will follow consecutively
from this one.

The number of consecutive zeroes which are
allowed in each valid byte in the filter.

The total number of bits in each byte, normally
between 8 and 10.

Chapter 8:Built-in Statements

NADOL Programmer’s Reference Manual 8.37

M ASK PRoCceDuURE

Purpose: Sets and clears bits in a range of memory.

Syntax. MASK(start lengthorevalue,andevalue)

Remarks: «starts The name of the variable which determines the
start of the area to mask.

length The number of oytes to mask.

orevalue The value to logically OR all bytes in the
specified range with.

andevalue The value to logically AND all bytes in the
specified range with.

This procedure can set bits in a range with the orevalue, and it
cah clear bits with the andevalue.

Example: The following statement:
MASK(RBUF[300],500, $80, $FE)

Would set bit 7 and clear bit O of the bytes from the 300th
element of RBUF to the 800th element of RBUF.

NEW __ Commeno

Purpose: Erases the current program and clears the current variable
space.

Syntax. NEW

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.38

N OT FUNCTION

Purpose: Returns the logical inverse of a value.

Syntax: variable= NOT(expression)

Remarks: If expression 1s 0, 1 is returned. In all other cases, 0 is
returned.

NORMAL — smmenent

Purpose: Returns text display to normal (non-inverse) mode.

Syntax: NORMAL

Example: See FLASH.

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.39

PA.CK PROCEDURE

Purpose: Places a text string into a byte array.

Syntax. PACK name WITH "text”

Remarks: «name» The name of the byte array where the string will be
placed.

text A sertes of ASCI! characters.
This procedure will place each character in text into the
variable name and place an extra 0 at the end of name to
terminate the string.
Example: The following program:
DEF INE BYTE[40] CAN
PACK CAN H!TH “SOUP OR OIL OR LIE COLR"
PRINT [CRH

Would print SOUP OR OIL OR LIRE COLA on the screen since that
string was placed into CAN with the PACK statement.

Chapter 8:Built—in Statements

N ADOL programmer's Reference Manual 8.40

PDL

FUNCTION

Purpose:
Syntax:

Remarks:

Reads a game paddie.
variable= PDL{expression)

expression can be a value from O to 3 and specifies the paddle
to be read.

The returned value will be from O to 235.

On the Apple //c, only values of 0 and | should be specified for
expression.

Example: The following program:

HHILE HEMORY[$C000]<128
GOTORY(10,10)
PRINT POL(D);" *
ENDHHILE
NEHORY[$C0101=0

would print the value of paddle O until a key is pressed.

In this example reference is made to location $C000, which is
the Apple’'s keyboard address. This causes the program to loop
until this location is greater than 127, which means that a key
has been pressed. The access to location $CO10 is made to
clear the key that was pressed.

Chapter 8:Built-in Statements

N ADOL programmer’s Reference Manual 8.41
PLOT

PROCEDURE
Purpose: Plots a dot on the lores screen.

Syntax: PLOT(zy)
Remarks: x The x coordinate, from 0 to 39.
y The y coordinate, from 0 to 47,

The dot 1s plotted using the current color specified with the
COLOR command.

Example: The following program would draw a blue X’ on the screen:

DEFINE INTEGER POS

LORES

COLOR=2

HHILE POS<=39
PLOT(POS, POS)
PLOT(POS, 39-P0S)
POS=P0S+1

EHDUHILE

pR# CoMMAND

Purpose: Sends all text output to a peripheral slot.
Syntax: PR¥ expression

Remarks: expression may be in the range of 0 to 7 and specifies the
peripheral slot for output. O selects the normal video output.

Example: The statement:
PR® 1

Would direct all output to slot 1, which could be a printer or
other peripheral device.

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.42

pRBLOCK PROCEDURE

Purpose:
Syntax:

Remarks:

Displays a section of memory in a variety of formats.
PRBLOCK(start length, label digits for mat,count 1 count2,space)

«start» The variable name specifying the first location to
display.

fength The number of oytes to display.

label The first number to show along the left margin of the
displayed data.

digits The number of digits to show of the label above. This
may be from O to 4. A dash is printed after the label,
and a space can be printed after the dash if 8 is added
to the value of digs.

format Selects how the data will be shown:
0= ASCI|
1= HEX
2= HEX with bytes less than $80 being shown in
inverse with $80 added to them.
countl The number of bytes to display per displayed line.
count2 The number of bytes to display per grouping on a line.

space The number of bytes to display between groupings on
aline.

Chapter 8:Built—in Statements

N ADOL programmer's Reference Manual 8.43
Example: The following program:

DEFINE INTEGER TRACK,SECTOR,COUNT,ERR
DEF IKE BYTE[255] BUFFER
HHILE TRACK<=34
SECTOR=0
HHILE SECTOR<=15
COUNT=1
RSECT(BUFFER, TRACK,0,SECTOR, COUNT, 6, 1,ERR)
PRBLOCK(BUFFER, 256,0,2,1,16,4,1)
SECTOR=SECTOR+1
ENDHHILE
TRACK=TRACK+1
ENDRHILE

Would print out all of the data on the diskette in slot six, drive
one.

Chapter 8:Built-in Statements

N ADOL programmer’s Reference manual 8.44

Purpose:
Syntax:

Remarks:

Example:

PRINT

PROCEDURE

To display data on the screen.
PRINT { expression } () (;} {expression} (] (;)...
expression may be on of the following:

A number, variable, or mathematical expression will
print as a decimal value.

A byte array name with an exclamation point (1) in front
of it will print as the text contained in it, up to the first
zero in the array.

3) Text enclosed in double quotes.

Each expression may be followed by a comma or semicolon. A
comma will cause the next printed expression to be at the next
8 position tab stop. A semicolon will cause the next printed
expression to appear immediately following the previous.

A PRINT statement may be ended with a comma or semicolon,
which will cause the nex{ item printed to obey the rules stated
above.

The following program:

DEFINE BYTE CH

CH=32

HHILE CH<128
PRINT CH,
PRINTBYTE CH,
PRINTHEX CH,
PRINT ICH
CH=CH+1

ENDUHILE

would print the numbers from 32 to 127 in decimal, byte,
hexadecimal and ASCII formats on the screen.

Chapter 8:Built-in Statements

N ADOL programmer’s Reference Manual 8.45A

FUNCTION
Purpose:

Reads a character from the keyboard with a cursor.
Syntax. variable= READ{(expression)

Remarks: expression A number, from 1 to 4, which specifies the width
of the cursor which is displayed.

This function will display a variable width cursor, and return
the value of the first character which is typed on the keyboard.
It 1s the normal way to read single character responses from
within a program.

Chapter 8: Buift-in Statements

N ADOL programmer's Reference manual 8.45

PRINTBYTE STATEMENT

Purpose: Prints 8 bit hexadecimal values.

Syntax. PRINTBYTE (expression} () (;} (expression} () (;}...

Remarks: This statement operates in the same manner as PRINT above,
except that values print as two hex digits representing the
lower byte of the value in hexadecimal.

Example: See PRINT.

PRINTHEX

STRATEMENT
Purpose: Print 16 bit hexadecimal values.

Syntax. PRINTHEX (expression) {) ;) (expression)} () ()..

Remarks: This statement operates in the same manner as PRINT above,
except that values print as four hex digits representing the
value in hexadecimal.

Example: See PRINT.

PROCEDURE

STATEMENT
Purpose: Defines a user subroutine.

Syntax: PROCEDURE name

Remarks: Chapter 6 has full details on the use of procedures and
functions from within a program.

Chapter 8:Built—in Statements

N ADOL programmer's Reference manual 8.46

RECA L PROCEDURE

Moves the read/write head In the specified disk drive to track
0.

Syntax: RECAL(slot,drive)
Remarks: slot The slot number to use.
drive The drive number to use.
This procedure moves the head to track zero from whatever
track it happens to be on by stepping the head out until it hits
the track zero stop, guaranteeing that the head s at track zero.
Example: The statement:

RECAL(6,1)

Would move the read head on slot six, drive one to track 0.

Purpose: Changes the name of a file on a data diskette.

Syntax: RENAME oldname newname

Remarks: The names specified may be either up to twelve character
names in quotes, or the names of byte arrays containing the file
names.

Example: The statement:

RENAHE “HYPROGRAN", “YOURPROGRAN"

Would change the name of the file HYPROGRAH to YOURPROGRAH.
The program itself would not be changed.

Chapter 8:Built-in Statements

NADOL Programmer’s Reference manual 8.47

Purpose:
Syntax:

Remarks:

Example:

RBLOCK ___ Proceoune

Reads one or more biocks from a ProDOS format diskette.
RBLOCK (address.block.count,slot.drive error)

«address» The name of the variable specifying the load address
for the first block read.

«block» The name of the variable containing the first block
number to read. On exit this variable will contain
the last block number read.

«county The name of the variable containing the number of
512 byte blocks to read in. On exit this variable
will contain zero if no errors occurred, or the
number of blocks left to be read i an error occurred.

slot The slot number of the disk drive to use,
drive The drive number to use.

«errors The name of the variable to place the return error
code into. A value of zero signifies no error.

This procedure reads blocks from a ProDOS format diskette.
This means 512 byte blocks, 8 per track, 280 per disk. This is
the format used by Apple Pascal and NADOL's data diskettes.

The following program would display all of the data on the
diskette in slot six, drive one on the screen in ASCII format:

DEFINE INTEGER BLOCK,COUNT,ERR
HHILE BLOCK<=279
COUNT=1
RBLOCK(RBUF , BLOCK, COUNT, 6, 1,ERR)
PRBLOCK(RBUF,512,0,2,0,32,32,0)
PRINT
BLOCK=BLOCK+1
ENDUHILE

Chapter 8:Built-in Stotements

N ADOL programmer's Reference manual 8.48

RESULT Statement

Purpose: Evaluates the expression to be returned as the result of a user
defined function.

Syntax: RESULT= exprescion

Remarks: expression is evaluated and returned to the calling statement in
the main program.

Example: See section & for full detalls on FUNCTION and RESULT.

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.49A

RSYNC PROCEDURE
Purpose: Functionally identical to RTRACK, except that a reference mark
on track zero is checked before reading.

Syntax:)55YNC(«pat.tem>.«address»,track,halr.slot.drive)

Remarks: «patierny The name of the byte array which contains the
pattern to be checked before seeking and reading.

¢addressy The hame of the variable which specifies the
address to begin reading at.

track The number of the track to read from.

half This is a zero or one signifying whether the haif
track should be read or not. Zero is the normal
value and causes the normal track to be read. A
value of one causes the next half track to be read

instead.
slot The slot number of the disk drive to use.
drive The drive number to use.

Remarks: Before reading, this procedure seeks to track 0, finds the
specified pattern, and then immediately seeks to the specified
track and begins to read.

Chapter 8: Built—in Statement

N ADOL programmer’s Reference manual 8.49
RSECT

PROCEDURE
Purpose: Reads one or more sectors from a diskette.

Syntax. RSECT(addresstrack half sector count,slot.drive.error)

Remarks: «addresss The name of the variable specifying the address to
begin reading at.

«track» The variable containing the track number to begin
reading on. On exit this will contain the track
number of the last read sector.

half This is a zero or one signifying whether the half
track should be read or not. zero is the normal value
and causes the normal track to be read. One causes
the next half track to be read instead.

«sectors> The variable containing the sector number to start
reading at. On exit this will contain the sector
number of the last sector read.

«count» The variable containing the number of sectors to
read. Sectors will be read in increasing order,
moving to the next track when the highest sector
number is reached. On exit this will contain zero if
no errors occurred, or the number of sectors that
were not read in if an error occurred.

slot The slot number of the disk drive to use.

drive The drive number to use.

«error» The name of the variable that the error return code
should be placed into. This will be a zero if no

errors occurred.

This routine reads using the format set with the SETFORMAT
procedure.

Example: See PRBLOCK.

Chapter 8:Built-in Statements

N ADOL programmer's Reference Manual 8.50

Purpose:

Syntax:

Remarks:

Example:

Reads the raw data from the specified track into the read
buffer,
RTRACK(address,track half siot.drive)

«address» The name of the variable which determines the
starting location for the data read from the

diskette.
track The track number to use.
half The half-track flag. A value of 'O’ causes the normal

track to be read. A value of "1’ causes the next
half-track to be read.

slot The slot number of {he drive Lo read.

drive The number of the drive to read.

RTRACK begins reading at the address specified above, and
always ends at RBUFI$3FFFl. This is the ending address in
RBUF, the main read buffer.

Data read from the disk has seven valid bits, 0-6 (the lower
seven). Bit 7 (MSB) signifies whether the byte was a SYNC byte
or not. If bit 7 is high, the byte was a normal 8 bit byte. If bit
7 is low the byte was followed by one or two zero bits on the
disk, making it a SYNC byte.

The statement:

RTRACK(RBUF,5,0,6,1)

would read the raw data from track 5 of the diskette in slot

six, drive one Into memory starting at the beginning of RBUF and
ending at the end of RBUF (RBUF[$3FFF1).

Chapter 8: Built-in Statements

N ADOL programmer’s Reference Manual 8.51

RUN CoMMAND

N O AT T SO
Purpose: Begins the execution of a user program.

Syntax: RUN
Remarks: The RUN command clears the screen and positions the cursor in

the upper left hand corner of the screen prior to executing the
user program,

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.52

Purpose:

Syntax:

SAVE

CoMMAND

Stores programs or data on a diskette.

SAVE filename (AT address,length)

Remarks: filename A quoted filename of up to twelve characters or the

Example:

name of the byte array containing the file name.

«address» |f specified, this is the name of the variable which
determines the location to begin the save at.

length If specified, this is the number of fytes to save to
the diskette.

If the AT section is not specified, then the current program in
memory is saved under the specified name on the current work
disk.

The AT option allows data to be saved, such as hires pictures
or blocks of information for future reference.

The statement:
SAVE "PROGRAR"

would save the current NADOL program in memory under the
name PROGRAM on the current workdrive.

The statement:
SRUE "PICTURE" AT MEMORY[$4000],$2000
Would save the memory from $4000 to $SFFF in a disk file

named PICTURE. This would save the hires picture buffer to
disk.

Chapter 8: Built-in Statements

N ADOL programmer’s Reference Manual 8.53

SETFORMAT PROCEDURE
Purpose: Selects the format, address header, data header, and interieave
for the RSECT, WSECT and FORMAT procedures.

Syntax: SETFORMAT(iype,addresseheader,datas header interleave)

Remarks: type The type of encoding to be used on the
diskette:
0= 6 and 2 (16 sector)
1=5and 3 (13 sector)
2= 4 and 4 (10 sector)

«addresseheaders The name of a byte array containing the six
bytes to be used as the address header.
The first three bytes are the address mark,
and the next three are the closing mark.

«dataeheader« The name of a byte array containing the six
bytes to be used as the data header. The
first three bytes are the data mark, and
the next three are the closing mark.

«interleaves The name of the byte array containing the
interleave table for the diskette. See the
section on pre-defined variables for
information on built-in interieave tables.

This procedure sets up internal information used when reading
and writing sectors.

Only the first two bytes of the closing mark are used for
reading, the third byte is for writing only.

Example: The statement:
SETFORNAT(0,ADDR16,DATA16, INT16)
Would select 6 and 2 format with the standard address field,

data field and interleave for normal DOS 3.3 diskettes. See
section 9 for more information on buiit-in variables.

Chaptes 8: Built-in Statements

N ADOL programmer’s Reference Manual 8.54

FUNCTION
Purpose: Determines the size of a NADOL disk file.

Syntax. variable= SIZEOF(filename)

Remarks: filename Up to twelve characters in quotes, or the name of
the byte array containing the file name.

This function returns the number of bytes occupied on the
current work disk by the specified file.

IT the specified Tile does not exist, a value of -1 is returned,

which allows NADOL programs to check for the existence of
programs on a diskette.

STRTEMENT
Terminates program execution and returns to immediate mode.

Purpose:
Syntax: STOP

Remarks: Setting BREAK-1 will disable this statement.

Purpose: Switches of f graphic modes and returns to full screen text
mode.

STATEMENT

Syntax:. TEXT

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.95

VL I NE PROCEDURE

1 A S M R R St
Purpose: Draws a vertical line on the lores screen.

Syntax: VLINE(x1,yly2)

Remarks: x1 X coordinate of the starting point, O to 39.
yl Y coordinate of the starting point, O to 47
y2 Y coordinate of the endpoint, O to 47
y2 must be greater than y1.

Example: See the COLOR statement.

Chapter 8: Built-in Statements

N ADOL programmer’s Reference Manual 8.56

Purpose:
Syntax:

Remarks:

Example:

WBLOCK

writes one or more blocks to a ProDOS format diskette.

PROCEDURE

WBLOCK (address.block count,slot drive error)

«addressy

«blocks

«counts

slot

drive

Lerrors»

The name of the vartable specifying the save
address for the first block written.

The name of the variable containing the first block
number to write. On exit this variabie will contain
the tast block number written.

The name of the vartable containing the number of
512 byte blocks to write out. On exit this variable
will contain zero 1f no errors occurred, or the
number of blocks left to be written in if an error
occurred.

The slot number of the disk drive to use.
The drive number to use.
The name of the variabie to place the return error

code into. A value of zero signifies that no error
took piace.

This procedure writes blocks to ProDOS format diskettes.. This
means 512 byte blocks, 8 per track, 280 per disk. This is the
format used by Apple Pascal and NADOL's data diskettes.

WBLOCK operates in the same fashion as RBLOCK. See RBLOCK
for a programming example.

Chapter 8: Built-in Statements

N ADOL programmer's Reference Manual 8.57

WHILE/ENDWHILE STATEMENT

Purpose:

Syntax:

Remarks:

Exampile:

Causes a section of a program to be executed repeatedly until a
condition is met.

WHILE expression
{executable statements)

ENDWHILE

If the value of expression i$ zero then program execution
resumes following the ENDWHILE statement.

If the value of expression IS non-zero, then the statements up
to the ENDWHILE are executed normally, and then control is
transferred back to the WHILE statement where expression {s
tested again. Control will continue to be transferred back to
the WHILE statement until expression evaluates to zero.

See COLOR, GOTOXY, HCOLOR, PDL, PLOT, PRBLOCK and RBLOCK
for programming examples.

Chapter 8: Built—in Statement

N ADOL programmer's Reference Manual 8.58

Purpose:
Syntax:

Remarks:

Example:

WORKDRIVE

STATEMENT

Deﬂne the Ivo file peratons, o
WORKDRIVE slot,drive

slot The slot of the disk drive to use.
drive The drive number to use.

The WORKDRIVE statement selects the drive which will be
used by all LOAD, SAVE, DELETE, RENAME and INIT commands.
Initially the WORKDRIVE is set to the boot drive.

The statement:

WORKDRIVE 6,2

Would cause future file statements to use slot 6, drive 2 until
another HORKDRIVE command was issued.

Chapter 8: Built-in Statement

N ADOL programmer's Reference Manual 8.59A
WSYNC

Purpose; Functionally fdentical to WTRACK, except that a reference mark
on track zero is checked before writing,

PROCEDURE

Syntax: WSYNC(«patterns,syncesize presfiil,irack half slot,drive,cerrors)

Remarks: <patterns The name of the byte array which contains the
pattern to be checked before seeking and writing.

syncesize A number, either 9 or 10, specifying the length, in
bits, of each sync byte written.

preefill The number of byte times to wait before writing
the data to the disk.

track The number of the track to write to.

haif This is a zero or one signifying whether the half

track should be written or not. Zero is the normal
value and causes the normal track to be written. A
value of one causes the next half track to be
written instead.

slot The slot number of the disk drive to use.
drive The drive number Lo use.
Lerrees The name of the variable that the error return code

should be placed into. This will be a zero if no
errors occurred, a write protect error will be 255,
a synchronization error will be 1.

Remarks: See WTRACK for the effect of the high bit of the data.
Before writing, this procedure seeks to track O, finds the
specified pattern, and then immediately seeks to the specified
track, waits preefill byte periods, and begins to write. Preefill
is used to let the disk drive turn a specific amount.

WSYNC always writes 10 SYNC bytes before the specified data.

N ADOL programmer's Reference Manual 8.59B

WTRACK PROCEDURE
Purpose: Wwrites a section of raw data to a diskette from the write
buffer.

Syntax. WTRACK(syncesize,preefill,track half slot,drive,cerrors)

Remarks: syncesize A number, either 9 or 10, specifying the iength, in
bits, of each sync byte written.

preefilf The number of sync bytes to write out prior to
writing any data. Normally this should be four or
greater.

track The number of the track to write to.

half This is a zero or one signifying whether the half

track should be written or not. Zero is the normal
value and causes the normal track to be written. A
value of one causes the next half track to be
written instead.

slot The slot number of the disk drive to use.
drive The drive number to use.
KEerrors The name of the variable that the error return code

should be placed into. This will be a zero if no
errors occurred.

Remarks: This procedure starts at the beginning of WBUF and proceeds to
write data until two consecutive zeros are encountered in the
data (two consecutive zeros is not a legal sequence to write to
the disk, so no conflicts arise).

The high bit in each byte determines how it will be written to
the disk. If the high bit is clear, the byte is written normally.
I the high bit is set, the byte is followed by extra zero bits,
making it a SYNC byte on the disk.

Chapter 8: Built—in Statement

N ADOL programmer's Reference Manual 8.99

PRDCEDURE
Purpose: Writes one or more sectors to a diskette.

Syntax. WSECT(address,track half sector count slot,drive.error)

Remarks: «address» The name of the variable specifying the address to
begin writing at.

«tracky The variable containing the track number to begin
writing on. On exit this will contain the track
number of the last sector written.

half This is a zero or one signifying whether the half
track should be written or not. Zero is the normal
value and causes the normal track to be written. A
value of one causes the next half track to be
writien instead.

«sector» The variable containing the sector number to start
writing at. On exit this will contain the sector
number of the last sector written,

«county The variable containing the number of sectors to
write. Sectors will be written in increasing order,
moving to the next track when the highest sector
number is reached. On exit this will contain zero
if no errors occurred, or the number of sectors
that were not written in if an error occurred.

slot The siot number of the disk drive to use.
drive The drive number to use.
«errory The name of the variable that the error return code

should be placed into. This will be a zero if no
errors occurred.

Remarks: This routine writes using the format set with the SETFORMAT
procedure.

Chaptes 8: Built-in Statement

R

Chapter 9

Built-in Variables

N ADOL programmer's Reference Manual 9.1

PREDEFINED VARIABLES

There are several variables which are built-in and therefore always
available to a user program or from immediate mode. These variables are
defined for some of the more commonly needed arrays, as well as for
system variables which need to be accessible from a program. They are as

follows:

MEMORY

Description:

BREAK

Description:

Caution:

Byte Array

An array which encompasses the entire machine memory
range. MEMORY[0] is location $0 in the computer's
memory and MEMORY[$FFFF] is location $FFFF. Al
addresses In between work the same way. This allows
access to any area in the machine’s memory. Use caution
with this array!

Byte

This byte controls the operation of ctri-C. If set to a zero
(normal) then ctri-C will stop program execution. If set
to a one, ctri-C will not halt program execution.

if This value is set to a one then <RESET> will not return
to immediate mode, it will cause the current program to
start executing from the beginning.

If this variable is set to 1, the program running cannot be
stopped by <RESED> or ctri-C! This is a potentially
dangerous situation since the computer must be turned
off to return to immediate mode, erasing any changes
made since the last save. To avoid this, only set BREAK
to 1 in well tested code, possibly adding an exit
command which sets BREAK back to 0 and ends the
program.

Chapter 9: Built—in Variables

N ADOL programmer's Reference Manual 9.2

ERROR

Description:

PRTSLOT

Description:

MACHID

Description:

HASLC

Description:

HASAUX

Description:

Byte

This byte contains the number of any error which has
occurred. If this number is set to other than 0 it will be
as though that error condition had occurred.

Byte

This byte contains the slot number to use for screen print
operations (ctri-P). It can be in the range of 1 through 7.

Byte

Indicates the type of machine being used. This byte is set
at boot time. The values for different machines are:

0= Apple J{ 2= Apple //e

1= Apple J[+ 3= Apple //c
If a non-Apple computer is being used which does not
match any known Apple ID pattern, NADOL will assume
that the computer is Apple J[+ compatible.

Byte

Indicates the presence of a language card in siot 0 of the
machine. A zero signifies no card, a one indicates that
one is avatlable. This check is performed at boot time.

Byte

Indicates the presence of useable auxiliary memory in the
machine. A zero signifies no card, a one indicates that
auxiliary memory is available. This check is done at boot
time. Note that this is always false on an Apple][or [+,
and always trueona //c.

Chapter 9: Built-in Variables

N ADOL programmer’s Reference Manual 9.3

RBUF

Description:

WBUF

Description:

ADDR16

Description:

DATA16

Description:

ADDR13

Description:

Byte array

This 1s the read buffer used by NADOL for raw data reads
(RTRACK). It is $3FFF bytes in length.

Byte Array

This is the write buffer used by the NADOL raw data write
routine (ITRACK). It is $20FF bytes in length.

Byte array

This array contains the normal address mark for 16 sector
diskettes. It is six bytes in length and contains the
following values:

DS AA 96 DE AAEB
This is normally used with the SETFORMAT procedure.

Byte array

This array contains the normat data mark for 16 sector
diskettes. It is six bytes in length and contains the
following values:

DS AA AD DE AA EB
This is normally used with the SETFORMAT procedure.

Byte array

This array contains the normal address mark for 13 sector
diskettes. It is six bytes in length and contains the
following values:

DS AABS DE AAEB
This is normally used with the SETFBRMAT procedure.

Chapter 9: Built-in Variables

N ADOL programmer's Reference Manual 9.4

DATAL3

Description:

FORMI6

Description:

FORMI13

Description:

INTI6

Description:

Byte array

This array contains the normal data mark for 13 sector
diskettes. It is six bytes in length and contains the
following values:

DS AA AD DE AAEB
This is normally used with the SETFORMAT procedure.

Byte array

This array contains the numbers for the sectors on a
normally interleaved 16 sector diskette. It is sixteen
bytes long and contains the following values:

000102030405 06 07 08 09 0A 0B OC 0D OE OF
This is normally used with the FBRMAT procedure.

Byte array

This array contains the numbers for the sectors on a
normally interleaved 13 sector diskette. It is thirteen
bytes long and contains the following values:

00 0A 070401 0B 08 05 02 0C 09 06 03
This is normally used with the FBRMAT procedure.

Byte array

This array contains the normal interleave table for a DOS
3.3 diskette. It is sixteen bytes in length and contains
the following vaiues;

00 0D 0B 09 07 0503 01 OE OC OA 08 06 04 02 OF
This is normally used with SEYFORMAT.

Chapter 9: Built-in Variables

N ADOL programmer's Reference Manual 9.9

INTPAS

Description:

INTCPM

Description:

INT13

Description:

WNDLEFT

Description:

WNDWIDTH

Description:

Byte array

This array contains the normal interieave table for a Pascal

or ProDOS diskette. 1t 1s sixteen bytes long and contains
the following values:

00 02 04 06 08 OA OC OE 01 03 05 07 09 0B OD OF
This 1s normally used with SETFORMAT.

Byte array

This array contains the normal interleave table for Apple
CP/M. It is sixteen bytes long and contains the following
values:

00 03 06 09 OC OF 02 05 08 OB OE 01 0407 OA OD
This is normally used with SETFORMAT.

Byte array

This array is the interleave table for diskettes which do
not use software interleaving, such as 13 sector disks.
It is thirteen bytes long and contains the values:

00 010203040506 070809 0A08B0C
This is normally used with SETFORMAT.

Byte

The value for the ieft margin of the text screen. Normaily

set to 0. The sum of this value and WNDWIDTH should
never exceed 40.

Byte

The value for the width of the text screen. Normally set

to 40. The sum of this value and WNDLEFT should never
exceed 40.

Chapter 9: Built—in Variables

N ADOL programmer’s Reference Manual 9.6

WNDTOP

Description:

WNDBOT

Description:

Byte
The value for the upper 1ine of the text screen. Normally
set to 0. This value should be from 0O to 22, but never
greater than WNDBOT.

Byte
The value for the lower line of the text screen. Normally

set to 23. This value should be from 0 to 23, but never
less than WNDTOP,

Chapter 9: Built—in Variables

Nibbles Away 11 & other Utitities 10.1

The NADOL master disk is shipped with Nibbles Away Il and several other
utilities. This section discusses the use of these utilities in detail.

when the NADOL master disk is booted, first a copyright message will
appear on the screen. Then the NADOL logo will be shown. At this point,
pressing the <SPACE> bar will cause the main NAIII menu to be displayed.
1t will look like this:

HRDOL HIBBLES AuAY 111 YERSIOR
00000 1.0

HASTER HEHU

s
&

HIBBLE COPY

2 - FAST SECTOR Cop¥
3 ~ TRACK EDITOR
4 ~ SECTOR EDITOR
5 - BISK SPEED TEST

6 - COHFIGURATION
7 - RUTO EXECUTE

6 - ERIT TO NADOL

9 - USER APPLICATIONS

ENTER SELECTION ->0 ? FOR HELP

The '?' key will cause a HELP screen to be displayed. This key is active in
each of the options on the menu, and can be used to obtain useful
information. For example, in the sector editor, the question mark will
display a list of valid commands and thelr functions.

Each of the other options on this menu will be discussed separately, since

each pertains to a different utility program. For now we will talk about
the last two options, *8 and ¥9.

stos 10: NALLL

Nibbles Away Il & other Utilities 10,2

Pressing ‘8" from this menu will exit to the NADOL immediate mode. If
this option is pressed by mistake, simply type 'RUN’ and press <RETURN> to
show the main NAIll menu once again (a message on the screen will remind
you of this). The immediate mode can be identified by the dot prompt *,
which shows at the left hand margin. From this mode, all of the features
of NADOL are directly accessible, as discussed in section 1| of this manual.
(For those users who wish to create NADOL work disks without NAIII on
them, see the note at the end of this chapter).

Option ‘9" switches the screen to a list of ‘'user applications’. These are
programs written by the user which can be run directly from the main
menu. There will be several suggestions in ‘Nibble News’, the Nibbles
Away newsletter, available from COMPUTER:applications, Inc. As shipped,
there are no names on this list, but any desired names may be added by
editing the ‘NAIII" program using the NADOL editor, described in section 1.

On the following pages each of the other options will be discussed, one at
a time,

inti screen

At any time, controi-P (press and hold the control key and then press 'P")
will cause the screen to be printed to the printer. NADOL is shipped to use
stotffor a printer, but this may be changed using option #6 (configuration,
see below). As the screen is printed, an underline will pass over the
screen, showing the progress of the printout. When the printout is
complete, NADOL (or NAIH) will resume what it was doing.

ter 10: NATLL

Nibbles Away Il & other Utitities 10.3

NIBBLE COPY

The Nibble copy.option (¥1) is the normal way to copy most protected
diskettes. It has several different options which enable it to duplicate
just about any protection system currently in use.

Wwhen this function is chosen, a selection screen will be displayed with
several options, Each option has a number to the left of it which is used to
change that particular option. If an option cannot be changed (i.e. the slot
number with only one disk controller in the system), then that option will
have its number replaced with an asterisk (¥) to show that it may not be
selected. Each option has the foliowing function:

1.

b wuN

Changes the source slot. Only slots which contain disk controliers will
be displayed.

Changes the source drive from 1 to 2 and back again.

Changes the destination siot.

Changes the destination drive.

Changes the starting track number. When this option is selected, the
cursor will be positioned to the right of the start track line. Then a
starting track value between 0 and $23 may be entered (this number
is entered in HEX). If a half-track value is desired, add '.5' to the
number.

Changes the ending track number. This is entered in the same fashion
as the starting track, above. The only restriction is that the ending
track must be larger than, or equal to, the starting track.

This option specifies by what increment the copy will step for each
new track. [t is entered in the same way as the previous two options.
The only restriction is that the step be greater than 0 and less than
$23.

This toggles the Synchronization flag. When set to '[ON], each track on
the destination disk will be placed in the same physical orientation
as on the original. Normally this option should be set to '[OFF]. See
section 3 for more details on synchronization.

Chapter 10: NA1IL

Nibbles Away I11 & other Utitities 10.4

9. This toggles the Nibble count flag. When set to ‘[ON], each track on the
destination disk will have the exact same number of nibbles as the
corresponding track on the original disk. Normally, this should be set
to '[OFF]. See section 3 for more details on Nibble counting.

0. This option will show another screen of options. These options are

those which do not normally need to be modified. This second screen

operates in the same way as the previous screen. The options allow a

specific address mark to be looked for, as opposed to the automatic

address mark selector. Also, the default sync byte size of 10 bits may be
set to 9 bits if desired. Normally, these options should be left in their
defauit condition.

Normally, these options will already be set correctly. The only item which
normally has to be changed is the source/destination information (options
1-4), if a single drive system is being used.

CAUTION: Original diskettes should ALWAYS have a write protect tab on
them when performing a copy, especially on a one drive system where
the disks are being exchanged into the disk drive. This will eliminate
the possibility of destroying a master disk due to insertion in the
wrong drive!

After all of the options are correct, press the <RETURN> key to begin the
copy. A prompt will ask for both disks to be inserted if using two drives,
or for the source disk to be inserted if only one drive is being used. After
inserting the appropriate disks, press the <RETURN> key to continue. As
the copy progresses, a status display will appear on the screen. The result
of the copy on each track will be displayed as it is completed.

The status code is a three digit sequence. The first character isa 'Y or'N’,
indicating whether or not that particular track was successfully copied.
The second number indicates the number of read errors encountered, while
the third shows the number of write errors which occurred on that
particular track.

pter 10: NALIL

Nibbles Away I « other Utitities 10.5

On any given track, NAII will give up if either five read errors or five
write errors occur. Read errors normally mean that NAIIl is unable to
‘locate any valid data on a particular track. Sometimes this may simply
indicate that the track has no usable data on it, other times it may
indicate a very advanced protection scheme. Write errors indicate that
there was trouble putting the data on the destination diskette properly.
This could mean that the drive speed is off, or that there is no disk in the
drive.

Generally, if the first character in the status code is 'Y', then the track
was properly copied, regardless of what the two errors counts indicate.

During the copy, several keys can be pressed to invoke special functions.
They are as follows:

- Aborts the current copy process.

- Skips to the next track.

-~ Enables the graphic display mode (mainly for entertainment).
- Disables the graphic mode, and switches back to text mode.

- O WO

There are two irrecoverable errors which may occur during a copy:

WRITE PROTECT ERROR
The destination disk has a write protect tab on it.

UNABLE TO SYNCHRONIZE ERROR
This will normally only occur if trying to perform a synchronized copy
on a disk with no locatable data on it (i.e. a blank disk).

Both of these will stop the copy in progress. Check the diskettes and retry
the copy.

Chapter 10: NATLL

Nibbles Away III & other Utitities 10.6

FAST SECTOR COPY

This option is used for diskettes which are 16 sector disks. This includes
all DOS 3.3, Apple Pascal, and Apple CP/M diskettes. This option is much
faster than the bit copy mode, and since it knows exactly what type of
disk is being copied, it can usually do it more accurately.

Another benefit is that a language card, and/or the auxiliary card ina //e
or //c will automatically be used (if both are present, only two disk swaps
are necessary to copy a whole disk!).

when this option is chosen, a selection menu is shown. The options are the
slot and drive for the source and destination disks. Each option has a
number to its left. If only one disk controller exists, then both slot
options will show and asterisk (¥) instead of a number, since that item
may not be changed.

Press the desired options until the proper slots/drives are shown. Then
press the <RETURN> key. The screen will then display a message asking for
the source (and destination on a two drive system) disks to be inserted.
After inserting the disk(s), press <RETURN> to begin. The copy process
will switch between the two disks, showing the current action on the
screen in inverse. If a one drive system is being used, the program will
stop and ask for the appropriate diskettes when necessary.

After the copy is complete, the program will ask if another disk should be
copied. If 'Y’ is answered, the option screen will be displayed and the
process can be repeated as often as desired. If 'N' is entered, the main
NAIT menu will be shown. (The master disk should be inserted into the
drive before selecting ‘N', or the program will ask for it).

Chaptes 10: NA111

Nibbles Away Ill & other Utitities 10.7

Track Editor

This option is used to view the raw data present on any track on a
diskette. Several options are available to allow the data to be scanned or
modified, and then written back to the disk if desired.

when first selected, this function will display several hundred bytes of
information from the start of the read buffer on the screen. A blinking
cursor will appear in the upper left hand area of data. This is the current
location pointer. Its location is displayed in the top left corner of the
screen at all times. In the upper right corner is the current track number,
initially set to zero.

Different keys from the keyboard invoke different functions. The '?" key
will display an abbreviated list of all of the commands and their functions.
The full list is given below:

| IOT Moves the cursor up one tine.

% Moves the cursor on byte to the left.

Koo Moves the cursor on byte to the right.

I Moves the cursor down one tine.

Arrows.... Perform the same functions as the keys listed above.

Y i Moves the cursor down one page.

Lo Moves the cursor up one page.

F o Increments the current track number.

IR Decrements the current track number.

| - Asks for a new track number to be entered from the keyboard.

1O U Shows the Options page which allows the selection of different
slot/drive combinations.

Frvi Asks for a HEX string to find. The cursor is moved to that location
if the string is found.

Corrn Shows the count of the number of bytes to the next occurrence of
the bytes at the cursor location.

P Shows the print menu, asking for a start and end location, and a
title for the data to be sent to the printer.

S Sets the ‘Track Start’ value to the cursor location.

B Sets the 'Track End' value to the cursor location.

M. Moves the currently marked track (start-end) into the write buffer
and sets the 'write buffer end' value accordingly.

VS Toggles between read and write buffer display.

C TN Prompts for a new location for the cursor.

Chaptesr 10: NATLL

Nibbles Away 111 & other Utitities 10.8

2 Reads the current track into the read buffer.
W, Writes the data in the write buffer to disk.
Qv Quits the track editor.

Space....Enters the modify mode. Once entered:
Typing HEX values will change the value of the current byte.
The space bar will move to the next value.
The <RETURN> key will accept the current value.
The arrow keys may be used to move the cursor.
The <ESC> key will abort the modify.

Data which has i1ts high bit clear will be written to the disk as a SYNC

byte, and will display on the screen in inverse.

The main use for the track editor will be to examine the data on the
various tracks on a diskette to determine where the data lies, and what it
is composed of. The data seen with this module is the ‘raw’ disk data. To

view the decoded version of the data, the sector editor should be used.

Chapter 10: NALLL

Nibbles Away 111 & other Utilities 10.9

Sector Editor

Option #4 invokes the sector editor. This module is used to view the data
on a disk which is either 16 sector, or 13 sector compatibie. This includes
all DOS 3.3, DOS 3.2, Apple Pascal and Apple CP/M diskettes. Along with
the ability to view the HEX and ASCII representation of the data, a
disassembly of the data may be viewed.

when this module is chosen, the standard display will be shown on the
screen. This consists of a HEX display of the current sector to the left,
and an ASCI! display to the right. At the top of the screen, the current
track and sector are displayed.

There are a number of commands available, each invoked with a different
key from the keyboard. As usual, the '?" key will show an abbreviated list
of commands. This is the full list:

| Moves the cursor up one line.

IS N Moves the cursor one location to the left.

Koo Moves the cursor one location to the right.

Mo, Moves the cursor down one line.

Arrows... Perform the same functions as the keys above.

oo Increments the sector number. If the sector number becomes

greater than the number of sectors on the track, the track
number is incremented by one, and the sector number is set to

Z€ero.

s Decrements the current sector number.

DI Increments the current track number.

v, Decrements the current track number.

L, Toggles the cursor between the HEX and ASCII displays.

Space... Enters the Modify mode:
HEX digits are accepted on the HEX side, space move to the next
value.
On the ASCII side, any characters may be typed.
The arrow keys will move the cursor around.
The <RETURN> key accepts the current change and exits the
modify mode.
The <ESC> key aborts the modify mode.
R Reads the current sector. If an error occurs, the ERROR message
is displayed, but whatever partial data which may have been
read will still be shown in the data displays.

Chapter 10: NALLL

Nibbles Away I11 & other Utitities 10.10

Wi Writes the current sector.

() N Disassembles the data in the buffer from the cursor location.
The forward and backward arrows page through the listing.
The <RETURN> key exits the disassembly mode.

| Prompts for a new track number, in HEX.
S Prompts for a new sector number, in HEX.
Freonrn Selects the Find mode.

The find menu s displayed and the following keys are active:

.. Prompts for the starting track.

. Prompts for the starting sector.

. Prompts for the ending track.

. Prompts for the ending sector.

. Switches between HEX and ASCII searching.

. Switches the search direction between ascending and
descending. This specifies whether the search will
progress downward through the sectors on each track, or
upward through them.

7... Prompts for a string to search for, up to 32 characters.
Pressing <RETURN> starts the search.
Pressing 'Q" aborts the search.
L Displays the Options menu. The following keys are active:
F... Switches the format between 13 and 16 sector.
L.... Switches the interleave between the various types.
H... Switches the High bit setting for ASCII characters entered
in the modify mode.
<RETURN> accepts the current selection.
¢ H Quits the sector editor.

SR hWN -

The sector editor can be used to look at the data on a diskette, allowing it
to be changed easily. This means that DOS commands or the Pascal system
prompts may be changed at will on a diskette.

If the sector editor is unable to read a particular sector, it usually means
that there is something wrong with the diskette. it may be, however, that
the protection scheme on a given disk prevents a sector from being read.
To see what the raw data on a disk looks like, the track editor can always
read any given track and display what its underlying format is.

Chapter 10: NATTL

Nibbles Away I1I & other Utitities 10.11

Disk Speed Test

Option #5 starts the disk speed test utility. Using this utility, any disk
drive can be set to the correct speed. Appendix C shows a diagram of the
inside of an Apple disk drive, and the location of the speed control
adjustment.

W ARNING: Disk speed adjustment requires that the disk drive be opened.
If done improperly, this procedure can cause severe damage to
the disk drive, and possibly the Apple. Excercise caution when
performing this adjusiment.

To perform this function, the disk drive in question should be opened
berore the power is turned on. The drive will operate properly without
its cover. Turn on the computer and select the disk speed test (#5).

The initial selection menu allows the slot and drive to be selected. Once
this is complete, press <RETURN> to continue.

Next, a warning message will appear, explaining that the disk used for this
test will be erased. At this point, insert a scratch diskette into the drive
to be tested, and press <RETURN>.

The speed test ruler will appear, and a pointer with a number below it will
begin to move back and forth below the ruler. The number is the current
disk speed. Above the ruler are some statistics about the drive. These
include the minimum and maximum speed so far, as well as the average
speed so far. If the speed is very far off, the pointer will appear at the
edge of the ruler, and a beep will sound at regular intervals. This
indicates that the disk speed is out of tolerance.

The disk speed may be adjusted s/ow/y while the test {s running, and the
resulis should be immediately apparent. The ideal speed for the disk drive
is between 0 and -10. Some variation of the disk speed is perfectly
normal. As long as the speed does not vary by more than 15 units between
any two readings, the disk stability is fine.

Chapter 10: NALLL

Nibbles Away 11 & other Utilities 10.12

Once the disk speed has been set, the computer should be turned off. Then
the disk drive can be closed back up, and put back into normal service. [t
may be desirable to run this test periodically, since most disk drives have
a tendency to speed up over time. This is normal and due simply to the
aging of certain components on the circuit board in the disk drive,

The figure supplied in the appendix pertains to standard Apple drives. If
your disk drive does not look like the one shown, it still may be possible to
adjust the speed. There will usually be a separate motor speed control
board within the drive, normally at the back of the drive. Some drives
required that the baseplate be removed to access the speed adjust control,
since it pointed downward. Some drive have the speed control circuitry
included into the rest of the electronics on a single board. In this case
there may be several controls which all look alike. The best option in this
case is to ask the manufacturer, or your dealer.

Anote on disk speed

If the speed of a disk drive is too high, there will be less time to write
data to it on each revolution of the disk. This can cause problems during a
copy, and is the main cause of write errors. If write errors occur, try
slowing down the disk drive by 5 or 10 units and re-running the copy. Many
times this will solve the problem. The disk controller circuitry can handle
a good deal of variation in speed, so this change will not affect the normal
operation of the drive.

Chapter 10: NAL1L

Nibbles Away I11 & Other Utitities 10.13

Configuratio

Option #6 starts the configuration module. This allows the selection of
display which will be used by the NADOL program editor, and allows the
default printer slot to be set.

This option will display a screen which shows the current printer slot and
editor configuration. Pressing the ‘P’ key will change the printer slot. If
no printer is installed, set this to 0. This will disable the screen print
function,

Pressing 'E' will change the type of editor. When both of these options are
at the desired values, press the <RETURN> key to make the changes
permanent.

The next time that the NADOL disk is booted, these changes will take
effect. If the changes are desired immediately, simply boot the disk now.

r 10: NATLL

Nibbles Away Il & other utitities 10.14

Auto-Execute

The Auto-execute section is provided for those programs which do not
copy using the nibble-copy option.

when this option is selected, the slot and drive for the source and
destination may be selected in a manner similar to that used in the nibble
copy section. Then the desired Auto-execute procedure is selected from
the menu with the arrow keys.

Pressing <RETURN> will start the auto-execute procedure. During this
operation, the program may stop and ask for the source and destination
disks to be inserted at various times. When complete, a message will be
displayed and the disks may be removed. Another Auto-Execute may be
performed by pressing <RETURN> to select another, or pressing '‘Q" will
return the user to the main NAIH menu.

Chapter 10: NALIL

Ry

Chapter 13

Disk Protection

Disk Protection 13.1

Throughout the evolution of disk protection on the Apple, there are several
techniques which have become popular. This chapter will examine each of
the major protection systems, explaining how they work, how to detect
them, and finally, how to bypass them to obtain back-ups.

In the process of designing the disk hardware for the Apple, particular
attention was paid to making it software intensive, rather than hardware
intensive. This means that a great deal of the burden for operating the
disk drive is placed on the controliing software, instead of building larger
and more complicated circuit boards to do the work. This aproach reduced
the cost of the Apple disk hardware, and at the same time increased its
reliability by cutting down the number of.components on the board. When
it was introduced, the Apple disk drive was considered an engineering
marvel due to its advanced design.

Since control of the hardware is placed mainly on the software, there is a
great deal of variation possible. This is what allows the huge variety of
copy protection systems which are on the market today to exist. Any time
a particular phase of the operation of the disk drive can be performed in
more than one way, there is a good chance that it is used in a disk
protection scheme somewhere.

First, we will examine the method used to store data on a diskette under &
normal operating environment, DOS 3.3 in this case. The physical
mechanics of the disk drive spin the diskette media inside its protective
jacket at 300 RPM. A read/write head moves across the disk, from the
outer edge to the inner one, much like the motion of the needle on a
phonograph. This creates 'rings’, called tracks, around the diskette where
data can be stored.

Each track can hold up to a theoretical maximum of about 6000 bytes of
information, and there are thirty five tracks per diskette. If we were to
use each track to hold a single piece of information, they could be up to
6000 bytes long, but if they were smaller, the extra room would be
wasted. Obviously, this would make a diskette unusable for general data
storage.

Chapter 13

Disk Protection 13.2

Figure |
Diskette Layout

instead each track is divided up into sixteen equally sized chunks called
sectors. Each of these sectors can hold two hundred fifty six bytes of
information. Figure one graphically illustrates how a diskette is
physically laid out. This results in just over four thousand bytes per
track. The reduction in storage is due in part to the extra information
used to mark where each sector starts and stops, but mostly to the
restrictions on the exact data which may be stored in a given byte
(described in detail below). For now, we can assume that about four
thousand (4k) bytes are available per track. The minimum amount of space
that must be used to hold a chunk of information is only 256 bytes, which
means that wastage is kept to a minimum.

in order to be able to locate a particular sector on a given track, special
information is placed in front of each sector so that the read/write head
can spot it as the diskette spins by. Figure two shows a step by step
blow~up of the different sections which make up the data on the diskette.
The address field contains four pieces of information about the sector
which follows. Each one takes up two bytes in the address field due to a
special type of encoding, described later.

Chapter 13

Disk Protection 13.3

ps [aa | 96 DE A4

Aﬁgiis vaol ltrk lsec lchk Close

. Address B Data
Field Mark

Gap 1

% Sector 1 E Sectar 2 g Sec.t.or z g Sectar 4 E};

Disk Data Stream

Figure 2
Blow-Up of Track Data

The first piece of information is the disk volume number., This was
originally designed to be used to make sure that the diskette in the drive
was the proper one. In fact, DOS 3.1 required that the proper volume
number be specified for all commands except catalog. The problem with
this scheme is that each disk must have a different number, but only two
hundred fifty five volume numbers are available. This system is no longer
in use, but the volume number lingers on to retain compatibility.

Next, is the track number on which this data resides. This may seem
redundant, but it is used to verify that the read/write head is positioned
over the proper track before reading or writing any data.

Following this is the sector number. The software controlling the disk
drive reads consecutive address fields until it finds the one containing the
desired sector number. At this point, the specified operation is performed.

The last is a code which is used as a checksum to verify that the previous
three pieces of information were read properly.

Chapter 13

Disk Protection 13.4

The next topic to be considered is how the data actually appears on the
diskette. The information on the diskette is actually just a series of
magnetic field changes. Once the read/write head passes over them and
the associated hardware does its job, the result is a series of 1's and O's
which are sent from the disk drive to the controiler in the Apple.

Three restrictions are placed on the actual bytes which may be processed
by the disk hardware:

1. Each disk byte must have its high bit set.
2. There may be no more than two consecutive zero bits in a byte.
3. Only one pair of consecutive zero bits may appear in a given byte.

Restriction 1 is used in conjunction with self-sync bytes to enable the
disk drive to locate the start and end of the data on the drive. A self-sync
byte is a byte which has all ‘1" bits ($FF) with extras O's after it on the
drive. In the case of DOS 3.3, there are two extra zeros after each
self-sync byte. Since each byte must have its high bit set, this enables us
to locate the proper start/stop of each byte following at least four
self-sync bytes. Figure three shows that no matter where in the bit
stream the hardware begins to read, after four self-sync bytes have
passed by, the head will be properly in sync with the data.

i nfgoocfitiiijoofiitiiitfoofitiiitijoofiiitty
i gofiriritifoofiifiiiijooffiiTifioofiiiitily
tiifjiitogpiiiiijoofiiiiiifooiiTTiTidoofiitiiig
1o oifiiriiojofitftitifoofifstitijoofiit1i111y
titfiooiiiiiiogpiitirifjooffitiftifoofiiiiiiig

tMimfiooiiitoogpiiiiioofiiiitijooffiiiily

oo oo iiiogiiiiirijoofTI1111Y

1111 oiiigpiiociipiiijooqiitiitiooiTiiiiid

Mmoo o ofifiiiigo ofifiiiiiJoofiT1i1i{y
Function of the 'Self-Sync’ Bytes

Figure 3
Function of SYNC bytes

Chapter 15

Disk Protection 13.5

Restriction 2 is caused by the hardware since a series of 0 bits means no
change in the magnetic field on the diskette, and after 2 bit times, the
head begins to return invalid data if no magnetic change occurs.

Restriction 3 is added for DOS 3.3 to eliminate a few values and leave 64
valid bytes. 64 possible bytes means that 6 bits of data can be written to
the disk for each byte which goes out through the disk hardware.

Since we are restricted to 6 bits per byte, an encoding system must be
used to allow us to place 256 bytes of data, each containing 8 valid bits,
onto the diskette. The way that this is done is to split each byte into two
groups, one of six bits, the other with two. The six bit group can be sent
out directly, while the two bit group is taken in three's (making six bits)
and written out. The total number of bytes which actually written is 342.
This is the reason that the actual storage capacity of a track is lower than
the theoretical capacity, as stated above.

This gives us a rudimentary description of the working of the disk drive
and its control software. The protection systems that are currently in use
all make use of some method by which they can modify one or more of the
basics discussed above. By doing this, they prevent the normal disk
controlling software from reading the diskette and thus, prevent
duplication.

The various techniques currently in use will be discussed in the following
chapters of this section. They will be presented roughly in the order in
which they appeared on the market. This should give the reader some idea
of the path that disk protection has taken over the last few years.

Chapter 135

Disk Protection 13.6

Modified Checksum

The checksum information found in the address field is computed by using
a particular combination of exclusive-or's among the previous data. As
long as all disks use this convention, no problems arise. Software
manufacturers found that by modifying how the checksum was created,
they could prevent normal duplication programs from reading their
software. This type of protection started to be used on a large number of
programs since it was very easy to impiement, and very reliable.

The one flaw to this system was that it was very easy to get around. All
that was necessary was to disable the checksum verification, since it is
really only a precautionary measure. This allowed most normal
duplication programs to read diskettes protected with this system. Most
of the time the new diskette would contain all of the correct information,
but with the checksums on the disk now generated by the standard method.
This meant that the disk did not operate because the disk read/write code
on the disk was set up for the modified checksum system. The solution to
this was to also disable the checksum verification on the new disk. This
resulted not only in a duplicate, but in a duplicate which was no longer
protected!

Today's sophisticated 'nibble copy’ programs do not use the checksum
information on a diskette at all, so they are not bothered in the least by
this type of protection. However, any diskettes created by a nibble copy
program will retain the same protection as the original, since the
protection is also reproduced.

Chapter 13

Disk Protection 13.7

Modifi r

The next type of protection to be used was modified address marks. This
involved changing the normal DS AA 96 address mark to some other
combination. This prevented normal backup programs from reading the
disk since they were unable to locate the start of the sectors on the disk.

To combat this, it was necessary to change the address marks in the
backup program being used. The problem was that every disk must have at
least one normal sector on it in order to boot. This meant that the backup
program had to be able to read at least two different formats. Because of
this, one could not simply change the backup programs built-in address
mark and begin to make a backup.

This problem was further complicated when manufacturers began to use
several different address marks on a single diskette. At this time, it was
no longer practical to use a normal backup program modified for different
address marks. This meant that nibble copiers were needed to back-up
this type of disk.

Nibble copiers have used several different methods for dealing with
diskettes which have several different address marks on them. One way is
to actually specify the address mark, but that requires a change for each
different address mark used. Fortunately, most nibble copiers require only
the address mark of one of the sectors on a given track. Many times this
cut down on the number of different address marks used.

Another method was to look for the GAPs (explained previously) which
precede each sector. This technique did not work for long, however.
Manufacturers found that there were actually many different bytes which
could be used in the GAPs instead of the normal FFs. This caused problems
for many nibble copiers, but it had even greater effects in some cases.

Many times the bytes which were chosen as the replacement GAP bytes
were not as stable from the controllers standpoint. This meant that the
disk controller could not always find the correct data on the diskette
properly. This resulted in higher failure rates on the diskettes, and the
end result was that the customer was burdened with faulty software.

Chapter 13

Disk Protection 13.8

The latest method for determining the address marks used on a particular
diskette is via the GAPs. This time however, it is not the value of the
bytes within the GAPs which is used. The nibble copier looks for a section
of SYNC bytes, regardiess of their vaiue, and uses this to determine where
the sectors begin. This method can ‘see through' many protection systems
and has a very high reliability. Another bonus is that it can perform this
analysis on most diskettes, making the backup process almost completely
automated.

The main disadvantage to both the modified checksum and the modified
address mark systems is compatibility. Data written by either one of
these systems cannot be read back by a normal system. This means that a
word processor or spreadsheet using this type of protection could read
f1les which it created, but not those created by any other system. Usually
this was sufficient for games, but business programs could not operate in
this fashion. This made these systems less desirable, and hence they are
used less and less today.

Chapter 13

Disk Protection 13.9

Synchronizati

Manufacturers needed some type of system which they could trust, yet one
which would allow perfectly normal data to be placed on a diskette.
Synchronization provided this.

The layout of a diskette shown in figure one is actually an ideal condition.
In real life, the sectors on each track do not line up with those on the next
track in an orderly fashion. However, whatever the orientation of the
tracks is, it will never change. Manufacturers used this fact to create a
protection system.

when the software was created, the orientation between two tracks, or
the spin angle (figure 2) was checked and recorded on the disk. Later
when the user booted the disk, this angle was checked again. If it had
varied, it meant that the data was no longer on the original disk and the
software would not operate.

/-———-——- Reference Mark

Track Start

Spin Angle

o
Figure 4
Spin Angle

This system worked very well because it allowed any data to be placed on
the disk, and it did not use any odd or unreliable methods of storing
information on the diskette. It also was beyond the power of all of the
existing nibble copy programs when it was first used. That did not last
long.

Chapter 13

Disk Protection 13.10

One of the telltale signs of this type of protection is a very fast seeking
sound from the disk drive. This is created by the stepper motor as it moves
the read/write head back and forth between the two tracks for which the
spin angle is being checked.

In order to duplicate this protection system, it is necessary to correctly
reproduce the spin angle for each track on the destination disk. This is
done by first copying track zero and finding a convenient unigue reference
mark which can be rellably located. Before reading each track on the
original, the reference mark is found. At this point, the head seeks
immediately to the track being duplicated, and then the number of bytes
which pass below the head before the first sector is encountered is
recorded. The reference mark is then located on the destination drive. The
head then moves to the destination track, and writing is suspended unti
the same number of bytes recorded during the read have passed under the
head. This preserves the spin angle and properly duplicates this type of
protection.

This system is still used today, since it is reliable and requires a nibbie
copler with advanced features in order to make a backup of it.

Chapter 13

Disk Protection 13.11

Nibble Counti

Every disk drive spins at a slightly different speed. When reading data,
this is taken into account by the disk controller, so there is no perceivable
effect to the user. On writing, however, the speed of the diskette affects
the number of bytes which will fit around a particular track. The variation
in this number will be small, but there will be a variation, since no
electric motor turns at a perfectly constant speed.

The nibble counting protection system uses this fact. When a particular
track is written out, the actual number of bytes which exist on the track
is counted and recorded. Later, when the program boots, this count is
checked. If the disk has been duplicated, the speed of the destination drive
will be different than that of the disk which originally created the master.
This means that there will be a few more or less GAP bytes on the disk.
This small difference is enough for the nibble counting protection system
to determine that the disk has been dupiicated.

This system is very difficult for a nibble copier to dupiicate. There are
basically two methods which can be used. The first is the manual method.
In this system the nibble copy program begins to write out the data over
and over. Between each write, it counts the number of bytes which
actually fit on the track. If the number is not correct, it tries again
During this time the user is told whether too many or too few bytes were
recorded. Using this information, the user manually adjusts the speed of
the disk drive. This system works very well, but it requires that the disk
drive be opened to perform it properily, which can be rather cumbersome.

The second method can be done automatically by a program, but it is not as
reliable. In this method, the non-essential data on the track is converted
to SYNC bytes, a few at a time. The bytes which are made SYNC become
25% longer, and take up more room. This allows the track to be expanded
under software control. The main drawback is that not all bytes may be
turned into SYNC bytes reliably, which can cause some data problems. [n
most cases, however, this technique is quite adequate.

Sometimes nibble counting is combined with synchronization. This can be

duplicated, but it can take a very long time, since these are the two most
time consuming protection systems to back-up.

Chapter 13

Disk Protection 13.12

Spiral T

One assumption which is normally made about data on a diskette is that
information may not lie on consecutive half-tracks. This is because the
read/write head's path is wider than one half track, so when one of the
two half-tracks were written, it would obliterate the other. There is a
variation on this theme, however, which has been used in a very effective
protection system.

If a section of data only exists for half of a revolution of the diskette,
then the other half could technically be used for data on a half track,
without the conflict described above. This is exactly what is done in
spiral tracking. Figure four shows this system graphically.

Figure 4
Spiral Tracks

The gray areas show where the data resides. Even though there is data on
ail of the half tracks, this system provides that no data will be ad/acent
to another half track containing data. The gaps of white between the
sections of data are provided to allow the read/write head time to move
from one track to another. This system is fairly reliable, but requires that
the user's drive be able to step to the half tracks. This is not a problem
for Apple drives, but some outside vendors have marketed disk drives
which can only step to the normal tracks. These drives will not operate
correctly with this type of protection.

Chapter 15

Disk Protection 13.13

Many times, this system is mixed with a modified address mark system. |t
may even incorporate a system wherein the address mark is different for
each and every section of data on the disk. Usually, the end of a particular
section of data will specify the address mark for the following section of
data. This type of protection can have many permutations added to it, and
is very difficult to back-up without some form of inteliigence in the
backup program (like that found in NADOL).

The procedure for backing up a disk with this type of protection is very
similar to that used for synchronized protection. The difference is that
instead of writing full tracks out, only smail portions of tracks are
written.

First track O is copled, and a reference mark is located. Then the tracks
starting (usually) with 1 are duplicated, preserving the spin angle. As
each track is written, only the actual section of the track which contains
data is written. This keeps the data from bleeding over into the tracks
which have previously been backed up.

Sometimes only a section of a particular disk will be protected in this
fashion. Since this system wastes so much space, only small programs
may be protected entirely in this fashion. Usually there will be the sound
of very rapid, continuous read/write head movement during the time when
this system is being used. The user may listen for this while a diskette is
booting to determine if this type of protection is in use.

Chapter 13

Disk Protection 13.14

Hidden Sync Bytes

One type of protection which was very effective, but is now basically
obsolete, is hidden sync bytes. This system involved placing one or more
sync bytes (those which are normally only used to lock the controlier) in
strategic positions. When this system was first introduced, there was no
easy way to detect the presence of sync bytes. This meant that a sync
byte could be present but there was almost no way to locate it. The only
effective way was to actually take apart the code which identified the
SYNC byte on the disk.

Today, however, things have changed a bit. NADOL can distinguish between
sync and non-sync bytes as it reads the disk. This means that all sync
bytes will be preserved in their proper locations, normally without any
user intervention whatsoever. This has made this type of protection much
less popular today. However, it is still used on some disks.

Chapter 13

e

Appendix A

Error messages

N ADOL programmer's Reference Manual Al
ERROR MESSAGES

The following table is a list of all of the error messages and their
associated numbers. The numbers are those that will be returned in the
variable 'ERAOR’. |f ERROR is set to one of these numbers, the appropriate
error message will be displayed as if the error had really occurred.

I = SYNTAX ERROR
Occurs when NADOL cannot understand a command. Usually the
result of spelling errors.

2 = () MISMATCH ERROR
The open ‘(" and close °) parentheses in an expression do not
match.

3 = PARAMETER COUNT ERROR
When calling a built-in procedure or function, an incorrect number
of parameters was entered.

4 = STACK OVERFLOW ERROR
The internal stack cannot hold any more information. Usually
caused by one of the following:
Nesting IF-ELSE-ENDIF or WHILE-ENDIHILE statements
too deeply.
Calling user defined procedure or functions from within
each other to more than 11 levels.
Nesting parentheses to more than 16 levels.

5 = DUPLICATE VARIABLE ERROR
Trying to DEFINE a variable name twice, or trying to name a
procedure and a variable by the same name will cause this
error.

6 = DUPLICATE PROC/FUNC ERROR
Trying to define a PROCEBURE or FUNCTION name twice, or
defining one with the name of a variable will cause this error.

7 = SYMBOL TABLE FULL ERROR

There is insufficient room to define any more variables,
procedures, functions or labels.

Appendix A: Error Messages

N ADOL programmer's Reference Manual A.2

8 = UNDEFINED SYMBOL ERROR
Reference was made to a variable or procedure which does not
exist. Spelling errors are the main cause of this error message.

Q9 = UNEXPECTED END OF FILE ERROR
If the closing statement for a block (ENDIF, ENDPROC,
ENDFUNC, ENDIDHILE) is left out, NADOL will run out of text
trying to find it.

11 = VALUE RANGE ERRCR
Some likely causes:
Assigning a value >255 to a BYTE variable.
Hires or lores coordinates out of range.
GOTOHY parameters out of range.

13 = NESTED LABEL ERROR
Labels may not be defined within IF-ELSE-ENBIF or
IWHILE-ENDIDHILE blocks.

14 = SUBSCRIPT ERROR
A variable's subscript could not be understood. Possibly
missing the " after the subscript.

15 = NO BEGIN ERROR
An ENDPROC or ENDFUNC statement was encountered without
the corresponding PROCEBURE or FUNCTION statement.

16 = WRONG TYPE OF PARAMETER ERROR
A constant was specified in place of a variable name for a
procedure which requires a variable name for one of its
parameters.

17 = READ ONLY ERROR
Some of the predefined variables may be referenced but may
not be modified.

19 = [MMEDIATE ONLY ERROR

The LIST, EDIT, and RUN commands may not be executed from
within a program.

Appendix A: Error Messages

N ADOL programmer's Reference Manual A3

20 = NO LANGUAGE CARD ERROR
An attempt was made to perform a data transfer to/from a
language card when none was present.

21 = NO AUXILIARY MEMORY ERROR
An attempt was made to perform a data transfer to/from
auxiliary memory when none was present.

22 = IF/ENDIF MISMATCH ERROR
The IF-ENDIF blocks are out of balance in a program,

23 = WHILE/ENDWHILE MISMATCH ERROR
The WHILE-ENDWHILE blocks are out of balance in a program.

24 = PROGRAM TO LARGE ERROR
An attempt was made to load a file which is to large for the
program area. This is normally caused by attempting to load a
non-program file without the AT option.

25 = 1/0 ERROR
A disk error occurred while trying to access the disk.
Normally caused by an open disk drive door or a bad diskette.

26 = DISK FULL ERROR
ANl of the available space on a data diskette has been used and
no additional data can be stored on it.

28 = FILE NOT FOUND ERROR
The specified file name could not be located on the current
work disk.

29 = NO APPLESOFT ERROR

Hires graphics were attempted without Applesoft BASIC in
ROM.

Appendix A: Ervor Messages

RIS

g}; DR

st
b
#
pesss
W
0
i

Appendix B

RN

G050

RS

Decimal / Hexadecimal / ASCI conversion chart

B.1

NADOLPMWWWWS%WWMM%WN

HEX ASCII DEC HEX ASCII

DEC

HEX ASCil

DEC

BRI ML o [, DD OV B DL m mE o BEE O BT Wear TP B K DN o amoom §

BB S BB A3 Y BB B SRR IR ERRIRRRE,

F oAl DN FRYROR ey § AL O WL eI Y S BRSO G =

ARAHUECRRIBELERE SRR LT ORI RRL 22992y LREORSR

FIEeS B s RIS BB YIRS RR R IR R RRESUNES

R i A |G S a3 S GRS TN GNOD e) KD CRNES S s GG O Q085 Ry N U OO MM S D WA WL M G GRS NS DD MRGI et o M NS D GRS

UL
S0H
ST
ETR
E0T
ERG
ALK
BEL
B8
H¥
LF
YT
FF
CR
80
St
DLE
et
B2
b3
bC4
HaK
SYH
ET8
CaN
EM
suB
ESC
F8
6
RS
us
!
&
$
%
&
(
)
*®

Sramenerer 2T IRIRYE22RoARIRERNRRARSNRIREERESY

Dectmal /HEX/ASCLL chart

N ADOL programmer’s Reference Manuat B.2

DEC HEX ASCH DEC HEX ASCH DEC HEX ASCI|
128 80 T R AB + | 214 D& v
129 81 SOH | 172 aC , | 215 v7 ¥
130 82 ST 173 &D | 216 D8 ¥
131 83 ETX i 174 AF . I 217 D9 ¥
132 24 EOT | 175 &F ! | 218 DA z
133 g5 ENQ | 176 BO 0 | 219 0B [
134 86 ACK {177 Bi i | 220 "N \
135 87 BEL I 178 B2 2 | 221 ('] |
136 88 BS (] B3 3 | 222 DE .
187 89 HT | 180 B4 4 | 223 oF -
138 84 LF | 181 BS 5 I 224 1] N
139 88 vT | 182 86 6 | 225 El a
140 8C FF | 183 B? 7 | 226 E2 b
141 8D R | 184 B8 8 | 227 E3 o
142 8 $0 | 185 B9 9 | 228 E4 d
143 &F sl | 186 BA : | 229] e
144 90 DLE | 187 BB ; | 230 E6 £
145 91 DCt | 188 BC < | 231 E? g
146 92 DC2 | 188 =) = | 282 E8 b
147 93 oC3 | 150 BE > | 233 E9 i
148 94 ocd 191 Bf ? | 224 EA j
149 93 NAK [192 o @ | 235 B k
150 96 SYN | 193 ct A | 236 EC 1
151 97 ETB | 194 c2 B8 | 237 & m
152 o8 CAN | 195 €3 ¢ | 238 EE n
153 99 EM | 196 c4 D | 239 EF o
154 94 sus | 197 cs E | 240 Fo P
155 o8 ESC] 198 cé F | 241 F1 q
156 ¢ FS | 198 €7 6 | 242 F2 ¥
157 9D 65 | 200 c8 H | 243 F3 5
158 3 RS | 201 c9 i | 244 4 t
159 oF us | 202 CA J | 245 FS v
160 A0 | 203 B K | 248 Fé v
161 Al ! | 204 cc L | 247 F7 ¥
162 A2 " | 205 D ™M | 248 (3] X
163 A3 # | 206 CE i | 249 F9 y
164 Ad $ | 207 oF 0 | 250 FA z
165 &5 % | 208 Do P I 251 B {
166 46 & | 209 D1 Q | 252 FC i
167 A7 : | 210 D2 R | 233 D }
168 A8 (| 21 D3 8 | 254 FE -
169 A9) | 212 D4 T | 295 FF

170 AA % | 213 DS] }

Appendix B: Decimal/HEX/ASCLL chart

Appendix C

Adjusting Disk Drive Speed

Disk Speed Adjustment

Top View

Speed Control
Adjustment

Side View

___Speed Control
Adjustment

Use the disk speed test option in NAIIL. While watching the
indicator on the screen, slawly change the speed adjustment.
when the desired speed is reached, 1et the drive stabilize
for a moment to verify the correct speed, then the
tesi is complete.

B

Appendix D

NADOL Memory Map

Memory Map

i «$FFFF
Monitor «$F800
«$F 7FF
Applesoft :
«$D000
«$CFFF
System 1/0 $C000
«$BFFF
NADOL Program code
«$8000
4$7EFF
Read Buffer :
«$4000
Ne$3FFF
N
Write Buffer N
N ¢
Ne$2700
This grows downward and Ne$26FF
. P46
User Program the variables grow below §
___ N
This grows downward :
Data for Variables into the free space
Free Space

Symbol Table This grows upward
into the free space

NADOL workspace

Zero Page, Stack and Screen

Brrrrrrrrrirrrrrrrrrrrrrrrrerrrn

A
A
Y
’
H
H
4
7
p
’
’
;
’
4
’
;
U4
/
’
4
’
¢
4
’
#
’
4
5
’
7
#]
’
J
4
v
'
4
J
i
v
#
U
v
4
4
Y
5
4
5
A
t
’
?
Y
!
A
4
#
7
g
U
b4

Appendix E

Quick Reference Guide

N ADOL programmer’s Reference Manual E.2

IF expression

{. statements executed on true)
(ELSE)

(.statements executed on false)

ENDIF

IN# expression

INIT name

INPUT(«namey», max,«counts)

INVERSE

LABEL name

LCMOVE(«memeaddresss lceaddress length direction)
variable= LENGTH(name)

LIST

LOAD fifename (AT «addresss }

LORES

variable= LSCRN(z,y)

MAKE(<address» fength,start numezeroes bitelength)
MASK(«starty length,or_value,and_value)

NEW

variable= NOT(expression)

NORMAL

PACK ¢<name» WITH “text”

variable~ PDL(expression)

PLOT(z,y)

PR# expression

PRBLOCK(«start» length label, digs format num 1 ,num2,space)
PRINT { expression } {,} (;} (expression) () (;]...
PRINTBYTE {expression) {,} {;) {expression]} (,) {;)...
PRINTHEX (expression) {,) {;} {expression} (,) (;}...
PROCEDURE name

RECAL(slot,drive)

RENAME oldname newname
RBLOCK(«address» «block» «count» slot drive «errors)
RESULT = expression

RSECT(<address»,«tracks half «sector»,«count» siot,drive cerrors)
RTRACK(<«address» track half slot,drive)

RUN

SAVE filename (AT «addresss,length)

Appendix E: Quick Reference

N ADOL programmer's Reference Manual E. 1

Quick Reference to Procedures and Functions

The following is a condensed list of the proper syntax for all of the
built-in statements. It is provided as a quick-reference quide, section 8
should be consulted for full details on all of the statements.

AUXMOVE(<appleeaddr»,auzeaddr length,direction)
BEEP(tone time)
CALL(«address»,caccumulators,«xeregisters,«yeregisters «statuss)
CATALOG

CLEAR

CLREOL

CLREOP

COLOR= expression

CONVERT(«source»,«destination» type,size,«count 1 »«count2»)
COPY(«sources,«destinations» length)

{ DEFINE } type {In]) name (name) ...

DELAY(expression)

DELETE filename

DISASM(«start» fabel lines,«offset»)

DISPLAY(«start» length)

EDIT

FILL(¢starts length value)

FIND(¢start» lengthl,«pattern» length2,7eflag wildefliag,«offset»)
FLASH

FORMAT (first last,volume,cinterieaves nsect,slot,drive error)
variable= FREE

FUNCTION name

GOTO labelname

GOTOXY(zy)

HCOLOR= expression

HEXPACK <name» WITH “text” (, checksum)}

HIRES

HLINE(x1,y1,x2)

HOME

HPLOT (xy} (TO x.y)...

variable= HSCRN(x,y)

Appendix E: Quick Reference

N ADOL programmer's Reference Manual E.3

SETFORMAT (type,«addresse header»,«datae header» cinterleaves)
variable= SIZEOF(filename)

STOP

TEXT

VLINE(x1,yl,y2)

WBLOCK(<address»,«block»,«counts slot,drive,«errors)

WHILE expression

{executable statements)

ENDWHILE
WORKDRIVE slot,drive
WSECT(«addresss»,«tracks half «sector»,«count» slot,drive «errors)

Appendix E: Quick Reference

